Versatile-Diffusion / lib /cfg_helper.py
Wmcs91's picture
Duplicate from shi-labs/Versatile-Diffusion
fb53ec8
import os
import os.path as osp
import shutil
import copy
import time
import pprint
import numpy as np
import torch
import matplotlib
import argparse
import json
import yaml
from easydict import EasyDict as edict
from .model_zoo import get_model
############
# cfg_bank #
############
def cfg_solvef(cmd, root):
if not isinstance(cmd, str):
return cmd
if cmd.find('SAME')==0:
zoom = root
p = cmd[len('SAME'):].strip('()').split('.')
p = [pi.strip() for pi in p]
for pi in p:
try:
pi = int(pi)
except:
pass
try:
zoom = zoom[pi]
except:
return cmd
return cfg_solvef(zoom, root)
if cmd.find('SEARCH')==0:
zoom = root
p = cmd[len('SEARCH'):].strip('()').split('.')
p = [pi.strip() for pi in p]
find = True
# Depth first search
for pi in p:
try:
pi = int(pi)
except:
pass
try:
zoom = zoom[pi]
except:
find = False
break
if find:
return cfg_solvef(zoom, root)
else:
if isinstance(root, dict):
for ri in root:
rv = cfg_solvef(cmd, root[ri])
if rv != cmd:
return rv
if isinstance(root, list):
for ri in root:
rv = cfg_solvef(cmd, ri)
if rv != cmd:
return rv
return cmd
if cmd.find('MODEL')==0:
goto = cmd[len('MODEL'):].strip('()')
return model_cfg_bank()(goto)
if cmd.find('DATASET')==0:
goto = cmd[len('DATASET'):].strip('()')
return dataset_cfg_bank()(goto)
return cmd
def cfg_solve(cfg, cfg_root):
# The function solve cfg element such that
# all sorrogate input are settled.
# (i.e. SAME(***) )
if isinstance(cfg, list):
for i in range(len(cfg)):
if isinstance(cfg[i], (list, dict)):
cfg[i] = cfg_solve(cfg[i], cfg_root)
else:
cfg[i] = cfg_solvef(cfg[i], cfg_root)
if isinstance(cfg, dict):
for k in cfg:
if isinstance(cfg[k], (list, dict)):
cfg[k] = cfg_solve(cfg[k], cfg_root)
else:
cfg[k] = cfg_solvef(cfg[k], cfg_root)
return cfg
class model_cfg_bank(object):
def __init__(self):
self.cfg_dir = osp.join('configs', 'model')
self.cfg_bank = edict()
def __call__(self, name):
if name not in self.cfg_bank:
cfg_path = self.get_yaml_path(name)
with open(cfg_path, 'r') as f:
cfg_new = yaml.load(
f, Loader=yaml.FullLoader)
cfg_new = edict(cfg_new)
self.cfg_bank.update(cfg_new)
cfg = self.cfg_bank[name]
cfg.name = name
if 'super_cfg' not in cfg:
cfg = cfg_solve(cfg, cfg)
self.cfg_bank[name] = cfg
return copy.deepcopy(cfg)
super_cfg = self.__call__(cfg.super_cfg)
# unlike other field,
# args will not be replaced but update.
if 'args' in cfg:
if 'args' in super_cfg:
super_cfg.args.update(cfg.args)
else:
super_cfg.args = cfg.args
cfg.pop('args')
super_cfg.update(cfg)
super_cfg.pop('super_cfg')
cfg = super_cfg
try:
delete_args = cfg.pop('delete_args')
except:
delete_args = []
for dargs in delete_args:
cfg.args.pop(dargs)
cfg = cfg_solve(cfg, cfg)
self.cfg_bank[name] = cfg
return copy.deepcopy(cfg)
def get_yaml_path(self, name):
if name.find('ldm')==0:
return osp.join(
self.cfg_dir, 'ldm.yaml')
elif name.find('comodgan')==0:
return osp.join(
self.cfg_dir, 'comodgan.yaml')
elif name.find('stylegan')==0:
return osp.join(
self.cfg_dir, 'stylegan.yaml')
elif name.find('absgan')==0:
return osp.join(
self.cfg_dir, 'absgan.yaml')
elif name.find('ashgan')==0:
return osp.join(
self.cfg_dir, 'ashgan.yaml')
elif name.find('sr3')==0:
return osp.join(
self.cfg_dir, 'sr3.yaml')
elif name.find('specdiffsr')==0:
return osp.join(
self.cfg_dir, 'specdiffsr.yaml')
elif name.find('openai_unet')==0:
return osp.join(
self.cfg_dir, 'openai_unet.yaml')
elif name.find('clip')==0:
return osp.join(
self.cfg_dir, 'clip.yaml')
elif name.find('sd')==0:
return osp.join(
self.cfg_dir, 'sd.yaml')
elif name.find('vd')==0:
return osp.join(
self.cfg_dir, 'vd.yaml')
elif name.find('optimus')==0:
return osp.join(
self.cfg_dir, 'optimus.yaml')
else:
raise ValueError
class dataset_cfg_bank(object):
def __init__(self):
self.cfg_dir = osp.join('configs', 'dataset')
self.cfg_bank = edict()
def __call__(self, name):
if name not in self.cfg_bank:
cfg_path = self.get_yaml_path(name)
with open(cfg_path, 'r') as f:
cfg_new = yaml.load(
f, Loader=yaml.FullLoader)
cfg_new = edict(cfg_new)
self.cfg_bank.update(cfg_new)
cfg = self.cfg_bank[name]
cfg.name = name
if cfg.get('super_cfg', None) is None:
cfg = cfg_solve(cfg, cfg)
self.cfg_bank[name] = cfg
return copy.deepcopy(cfg)
super_cfg = self.__call__(cfg.super_cfg)
super_cfg.update(cfg)
cfg = super_cfg
cfg.super_cfg = None
try:
delete = cfg.pop('delete')
except:
delete = []
for dargs in delete:
cfg.pop(dargs)
cfg = cfg_solve(cfg, cfg)
self.cfg_bank[name] = cfg
return copy.deepcopy(cfg)
def get_yaml_path(self, name):
if name.find('cityscapes')==0:
return osp.join(
self.cfg_dir, 'cityscapes.yaml')
elif name.find('div2k')==0:
return osp.join(
self.cfg_dir, 'div2k.yaml')
elif name.find('gandiv2k')==0:
return osp.join(
self.cfg_dir, 'gandiv2k.yaml')
elif name.find('srbenchmark')==0:
return osp.join(
self.cfg_dir, 'srbenchmark.yaml')
elif name.find('imagedir')==0:
return osp.join(
self.cfg_dir, 'imagedir.yaml')
elif name.find('places2')==0:
return osp.join(
self.cfg_dir, 'places2.yaml')
elif name.find('ffhq')==0:
return osp.join(
self.cfg_dir, 'ffhq.yaml')
elif name.find('imcpt')==0:
return osp.join(
self.cfg_dir, 'imcpt.yaml')
elif name.find('texture')==0:
return osp.join(
self.cfg_dir, 'texture.yaml')
elif name.find('openimages')==0:
return osp.join(
self.cfg_dir, 'openimages.yaml')
elif name.find('laion2b')==0:
return osp.join(
self.cfg_dir, 'laion2b.yaml')
elif name.find('laionart')==0:
return osp.join(
self.cfg_dir, 'laionart.yaml')
elif name.find('celeba')==0:
return osp.join(
self.cfg_dir, 'celeba.yaml')
elif name.find('coyo')==0:
return osp.join(
self.cfg_dir, 'coyo.yaml')
elif name.find('pafc')==0:
return osp.join(
self.cfg_dir, 'pafc.yaml')
elif name.find('coco')==0:
return osp.join(
self.cfg_dir, 'coco.yaml')
else:
raise ValueError
class experiment_cfg_bank(object):
def __init__(self):
self.cfg_dir = osp.join('configs', 'experiment')
self.cfg_bank = edict()
def __call__(self, name):
if name not in self.cfg_bank:
cfg_path = self.get_yaml_path(name)
with open(cfg_path, 'r') as f:
cfg = yaml.load(
f, Loader=yaml.FullLoader)
cfg = edict(cfg)
cfg = cfg_solve(cfg, cfg)
cfg = cfg_solve(cfg, cfg)
# twice for SEARCH
self.cfg_bank[name] = cfg
return copy.deepcopy(cfg)
def get_yaml_path(self, name):
return osp.join(
self.cfg_dir, name+'.yaml')
def load_cfg_yaml(path):
if osp.isfile(path):
cfg_path = path
elif osp.isfile(osp.join('configs', 'experiment', path)):
cfg_path = osp.join('configs', 'experiment', path)
elif osp.isfile(osp.join('configs', 'experiment', path+'.yaml')):
cfg_path = osp.join('configs', 'experiment', path+'.yaml')
else:
assert False, 'No such config!'
with open(cfg_path, 'r') as f:
cfg = yaml.load(f, Loader=yaml.FullLoader)
cfg = edict(cfg)
cfg = cfg_solve(cfg, cfg)
cfg = cfg_solve(cfg, cfg)
return cfg
##############
# cfg_helper #
##############
def get_experiment_id(ref=None):
if ref is None:
time.sleep(0.5)
return int(time.time()*100)
else:
try:
return int(ref)
except:
pass
_, ref = osp.split(ref)
ref = ref.split('_')[0]
try:
return int(ref)
except:
assert False, 'Invalid experiment ID!'
def record_resume_cfg(path):
cnt = 0
while True:
if osp.exists(path+'.{:04d}'.format(cnt)):
cnt += 1
continue
shutil.copyfile(path, path+'.{:04d}'.format(cnt))
break
def get_command_line_args():
parser = argparse.ArgumentParser()
parser.add_argument('--debug', action='store_true', default=False)
parser.add_argument('--config', type=str)
parser.add_argument('--gpu', nargs='+', type=int)
parser.add_argument('--node_rank', type=int, default=0)
parser.add_argument('--nodes', type=int, default=1)
parser.add_argument('--addr', type=str, default='127.0.0.1')
parser.add_argument('--port', type=int, default=11233)
parser.add_argument('--signature', nargs='+', type=str)
parser.add_argument('--seed', type=int)
parser.add_argument('--eval', type=str)
parser.add_argument('--eval_subdir', type=str)
parser.add_argument('--pretrained', type=str)
parser.add_argument('--resume_dir', type=str)
parser.add_argument('--resume_step', type=int)
parser.add_argument('--resume_weight', type=str)
args = parser.parse_args()
# Special handling the resume
if args.resume_dir is not None:
cfg = edict()
cfg.env = edict()
cfg.env.debug = args.debug
cfg.env.resume = edict()
cfg.env.resume.dir = args.resume_dir
cfg.env.resume.step = args.resume_step
cfg.env.resume.weight = args.resume_weight
return cfg
cfg = load_cfg_yaml(args.config)
cfg.env.debug = args.debug
cfg.env.gpu_device = [0] if args.gpu is None else list(args.gpu)
cfg.env.master_addr = args.addr
cfg.env.master_port = args.port
cfg.env.dist_url = 'tcp://{}:{}'.format(args.addr, args.port)
cfg.env.node_rank = args.node_rank
cfg.env.nodes = args.nodes
istrain = False if args.eval is not None else True
isdebug = cfg.env.debug
if istrain:
if isdebug:
cfg.env.experiment_id = 999999999999
cfg.train.signature = ['debug']
else:
cfg.env.experiment_id = get_experiment_id()
if args.signature is not None:
cfg.train.signature = args.signature
else:
if 'train' in cfg:
cfg.pop('train')
cfg.env.experiment_id = get_experiment_id(args.eval)
if args.signature is not None:
cfg.eval.signature = args.signature
if isdebug and (args.eval is None):
cfg.env.experiment_id = 999999999999
cfg.eval.signature = ['debug']
if args.eval_subdir is not None:
if isdebug:
cfg.eval.eval_subdir = 'debug'
else:
cfg.eval.eval_subdir = args.eval_subdir
if args.pretrained is not None:
cfg.eval.pretrained = args.pretrained
# The override pretrained over the setting in cfg.model
if args.seed is not None:
cfg.env.rnd_seed = args.seed
return cfg
def cfg_initiates(cfg):
cfge = cfg.env
isdebug = cfge.debug
isresume = 'resume' in cfge
istrain = 'train' in cfg
haseval = 'eval' in cfg
cfgt = cfg.train if istrain else None
cfgv = cfg.eval if haseval else None
###############################
# get some environment params #
###############################
cfge.computer = os.uname()
cfge.torch_version = str(torch.__version__)
##########
# resume #
##########
if isresume:
resume_cfg_path = osp.join(cfge.resume.dir, 'config.yaml')
record_resume_cfg(resume_cfg_path)
with open(resume_cfg_path, 'r') as f:
cfg_resume = yaml.load(f, Loader=yaml.FullLoader)
cfg_resume = edict(cfg_resume)
cfg_resume.env.update(cfge)
cfg = cfg_resume
cfge = cfg.env
log_file = cfg.train.log_file
print('')
print('##########')
print('# resume #')
print('##########')
print('')
with open(log_file, 'a') as f:
print('', file=f)
print('##########', file=f)
print('# resume #', file=f)
print('##########', file=f)
print('', file=f)
pprint.pprint(cfg)
with open(log_file, 'a') as f:
pprint.pprint(cfg, f)
####################
# node distributed #
####################
if cfg.env.master_addr!='127.0.0.1':
os.environ['MASTER_ADDR'] = cfge.master_addr
os.environ['MASTER_PORT'] = '{}'.format(cfge.master_port)
if cfg.env.dist_backend=='nccl':
os.environ['NCCL_SOCKET_FAMILY'] = 'AF_INET'
if cfg.env.dist_backend=='gloo':
os.environ['GLOO_SOCKET_FAMILY'] = 'AF_INET'
#######################
# cuda visible device #
#######################
os.environ["CUDA_VISIBLE_DEVICES"] = ','.join(
[str(gid) for gid in cfge.gpu_device])
#####################
# return resume cfg #
#####################
if isresume:
return cfg
#############################################
# some misc setting that not need in resume #
#############################################
cfgm = cfg.model
cfge.gpu_count = len(cfge.gpu_device)
##########################################
# align batch size and num worker config #
##########################################
gpu_n = cfge.gpu_count * cfge.nodes
def align_batch_size(bs, bs_per_gpu):
assert (bs is not None) or (bs_per_gpu is not None)
bs = bs_per_gpu * gpu_n if bs is None else bs
bs_per_gpu = bs // gpu_n if bs_per_gpu is None else bs_per_gpu
assert (bs == bs_per_gpu * gpu_n)
return bs, bs_per_gpu
if istrain:
cfgt.batch_size, cfgt.batch_size_per_gpu = \
align_batch_size(cfgt.batch_size, cfgt.batch_size_per_gpu)
cfgt.dataset_num_workers, cfgt.dataset_num_workers_per_gpu = \
align_batch_size(cfgt.dataset_num_workers, cfgt.dataset_num_workers_per_gpu)
if haseval:
cfgv.batch_size, cfgv.batch_size_per_gpu = \
align_batch_size(cfgv.batch_size, cfgv.batch_size_per_gpu)
cfgv.dataset_num_workers, cfgv.dataset_num_workers_per_gpu = \
align_batch_size(cfgv.dataset_num_workers, cfgv.dataset_num_workers_per_gpu)
##################
# create log dir #
##################
if istrain:
if not isdebug:
sig = cfgt.get('signature', [])
version = get_model().get_version(cfgm.type)
sig = sig + ['v{}'.format(version), 's{}'.format(cfge.rnd_seed)]
else:
sig = ['debug']
log_dir = [
cfge.log_root_dir,
'{}_{}'.format(cfgm.symbol, cfgt.dataset.symbol),
'_'.join([str(cfge.experiment_id)] + sig)
]
log_dir = osp.join(*log_dir)
log_file = osp.join(log_dir, 'train.log')
if not osp.exists(log_file):
os.makedirs(osp.dirname(log_file))
cfgt.log_dir = log_dir
cfgt.log_file = log_file
if haseval:
cfgv.log_dir = log_dir
cfgv.log_file = log_file
else:
model_symbol = cfgm.symbol
if cfgv.get('dataset', None) is None:
dataset_symbol = 'nodataset'
else:
dataset_symbol = cfgv.dataset.symbol
log_dir = osp.join(cfge.log_root_dir, '{}_{}'.format(model_symbol, dataset_symbol))
exp_dir = search_experiment_folder(log_dir, cfge.experiment_id)
if exp_dir is None:
if not isdebug:
sig = cfgv.get('signature', []) + ['evalonly']
else:
sig = ['debug']
exp_dir = '_'.join([str(cfge.experiment_id)] + sig)
eval_subdir = cfgv.get('eval_subdir', None)
# override subdir in debug mode (if eval_subdir is set)
eval_subdir = 'debug' if (eval_subdir is not None) and isdebug else eval_subdir
if eval_subdir is not None:
log_dir = osp.join(log_dir, exp_dir, eval_subdir)
else:
log_dir = osp.join(log_dir, exp_dir)
disable_log_override = cfgv.get('disable_log_override', False)
if osp.isdir(log_dir):
if disable_log_override:
assert False, 'Override an exsited log_dir is disabled at [{}]'.format(log_dir)
else:
os.makedirs(log_dir)
log_file = osp.join(log_dir, 'eval.log')
cfgv.log_dir = log_dir
cfgv.log_file = log_file
######################
# print and save cfg #
######################
pprint.pprint(cfg)
with open(log_file, 'w') as f:
pprint.pprint(cfg, f)
with open(osp.join(log_dir, 'config.yaml'), 'w') as f:
yaml.dump(edict_2_dict(cfg), f)
#############
# save code #
#############
save_code = False
if istrain:
save_code = cfgt.get('save_code', False)
elif haseval:
save_code = cfgv.get('save_code', False)
if save_code:
codedir = osp.join(log_dir, 'code')
if osp.exists(codedir):
shutil.rmtree(codedir)
for d in ['configs', 'lib']:
fromcodedir = d
tocodedir = osp.join(codedir, d)
shutil.copytree(
fromcodedir, tocodedir,
ignore=shutil.ignore_patterns(
'*__pycache__*', '*build*'))
for codei in os.listdir('.'):
if osp.splitext(codei)[1] == 'py':
shutil.copy(codei, codedir)
#######################
# set matplotlib mode #
#######################
if 'matplotlib_mode' in cfge:
try:
matplotlib.use(cfge.matplotlib_mode)
except:
print('Warning: matplotlib mode [{}] failed to be set!'.format(cfge.matplotlib_mode))
return cfg
def edict_2_dict(x):
if isinstance(x, dict):
xnew = {}
for k in x:
xnew[k] = edict_2_dict(x[k])
return xnew
elif isinstance(x, list):
xnew = []
for i in range(len(x)):
xnew.append( edict_2_dict(x[i]) )
return xnew
else:
return x
def search_experiment_folder(root, exid):
target = None
for fi in os.listdir(root):
if not osp.isdir(osp.join(root, fi)):
continue
if int(fi.split('_')[0]) == exid:
if target is not None:
return None # duplicated
elif target is None:
target = fi
return target