Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team. | |
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" OpenAI GPT-2 configuration """ | |
from __future__ import absolute_import, division, print_function, unicode_literals | |
import json | |
import logging | |
import sys | |
from io import open | |
from .configuration_utils import PretrainedConfig | |
logger = logging.getLogger(__name__) | |
GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP = {"gpt2": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-config.json", | |
"gpt2-medium": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-medium-config.json", | |
"gpt2-large": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-large-config.json"} | |
class GPT2Config(PretrainedConfig): | |
"""Configuration class to store the configuration of a `GPT2Model`. | |
Args: | |
vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `GPT2Model` or a configuration json file. | |
n_positions: Number of positional embeddings. | |
n_ctx: Size of the causal mask (usually same as n_positions). | |
n_embd: Dimensionality of the embeddings and hidden states. | |
n_layer: Number of hidden layers in the Transformer encoder. | |
n_head: Number of attention heads for each attention layer in | |
the Transformer encoder. | |
layer_norm_epsilon: epsilon to use in the layer norm layers | |
resid_pdrop: The dropout probabilitiy for all fully connected | |
layers in the embeddings, encoder, and pooler. | |
attn_pdrop: The dropout ratio for the attention | |
probabilities. | |
embd_pdrop: The dropout ratio for the embeddings. | |
initializer_range: The sttdev of the truncated_normal_initializer for | |
initializing all weight matrices. | |
""" | |
pretrained_config_archive_map = GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP | |
def __init__( | |
self, | |
vocab_size_or_config_json_file=50257, | |
n_positions=1024, | |
n_ctx=1024, | |
n_embd=768, | |
n_layer=12, | |
n_head=12, | |
resid_pdrop=0.1, | |
embd_pdrop=0.1, | |
attn_pdrop=0.1, | |
layer_norm_epsilon=1e-5, | |
initializer_range=0.02, | |
num_labels=1, | |
summary_type='cls_index', | |
summary_use_proj=True, | |
summary_activation=None, | |
summary_proj_to_labels=True, | |
summary_first_dropout=0.1, | |
**kwargs | |
): | |
"""Constructs GPT2Config. | |
Args: | |
vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `GPT2Model` or a configuration json file. | |
n_positions: Number of positional embeddings. | |
n_ctx: Size of the causal mask (usually same as n_positions). | |
n_embd: Dimensionality of the embeddings and hidden states. | |
n_layer: Number of hidden layers in the Transformer encoder. | |
n_head: Number of attention heads for each attention layer in | |
the Transformer encoder. | |
layer_norm_epsilon: epsilon to use in the layer norm layers | |
resid_pdrop: The dropout probabilitiy for all fully connected | |
layers in the embeddings, encoder, and pooler. | |
attn_pdrop: The dropout ratio for the attention | |
probabilities. | |
embd_pdrop: The dropout ratio for the embeddings. | |
initializer_range: The sttdev of the truncated_normal_initializer for | |
initializing all weight matrices. | |
""" | |
super(GPT2Config, self).__init__(**kwargs) | |
if isinstance(vocab_size_or_config_json_file, str) or (sys.version_info[0] == 2 | |
and isinstance(vocab_size_or_config_json_file, unicode)): | |
with open(vocab_size_or_config_json_file, "r", encoding="utf-8") as reader: | |
json_config = json.loads(reader.read()) | |
for key, value in json_config.items(): | |
self.__dict__[key] = value | |
elif isinstance(vocab_size_or_config_json_file, int): | |
self.vocab_size = vocab_size_or_config_json_file | |
self.n_ctx = n_ctx | |
self.n_positions = n_positions | |
self.n_embd = n_embd | |
self.n_layer = n_layer | |
self.n_head = n_head | |
self.resid_pdrop = resid_pdrop | |
self.embd_pdrop = embd_pdrop | |
self.attn_pdrop = attn_pdrop | |
self.layer_norm_epsilon = layer_norm_epsilon | |
self.initializer_range = initializer_range | |
self.num_labels = num_labels | |
self.summary_type = summary_type | |
self.summary_use_proj = summary_use_proj | |
self.summary_activation = summary_activation | |
self.summary_first_dropout = summary_first_dropout | |
self.summary_proj_to_labels = summary_proj_to_labels | |
else: | |
raise ValueError( | |
"First argument must be either a vocabulary size (int)" | |
"or the path to a pretrained model config file (str)" | |
) | |
def max_position_embeddings(self): | |
return self.n_positions | |
def hidden_size(self): | |
return self.n_embd | |
def num_attention_heads(self): | |
return self.n_head | |
def num_hidden_layers(self): | |
return self.n_layer | |