Wmcs91's picture
Duplicate from shi-labs/Versatile-Diffusion
fb53ec8
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Configuration base class and utilities."""
from __future__ import (absolute_import, division, print_function,
unicode_literals)
import copy
import json
import logging
import os
from io import open
from .file_utils import cached_path, CONFIG_NAME
logger = logging.getLogger(__name__)
class PretrainedConfig(object):
r""" Base class for all configuration classes.
Handles a few parameters common to all models' configurations as well as methods for loading/downloading/saving configurations.
Note:
A configuration file can be loaded and saved to disk. Loading the configuration file and using this file to initialize a model does **not** load the model weights.
It only affects the model's configuration.
Class attributes (overridden by derived classes):
- ``pretrained_config_archive_map``: a python ``dict`` of with `short-cut-names` (string) as keys and `url` (string) of associated pretrained model configurations as values.
Parameters:
``finetuning_task``: string, default `None`. Name of the task used to fine-tune the model. This can be used when converting from an original (TensorFlow or PyTorch) checkpoint.
``num_labels``: integer, default `2`. Number of classes to use when the model is a classification model (sequences/tokens)
``output_attentions``: boolean, default `False`. Should the model returns attentions weights.
``output_hidden_states``: string, default `False`. Should the model returns all hidden-states.
``torchscript``: string, default `False`. Is the model used with Torchscript.
"""
pretrained_config_archive_map = {}
def __init__(self, **kwargs):
self.finetuning_task = kwargs.pop('finetuning_task', None)
self.num_labels = kwargs.pop('num_labels', 2)
self.output_attentions = kwargs.pop('output_attentions', False)
self.output_hidden_states = kwargs.pop('output_hidden_states', False)
self.torchscript = kwargs.pop('torchscript', False)
self.pruned_heads = kwargs.pop('pruned_heads', {})
def save_pretrained(self, save_directory):
""" Save a configuration object to the directory `save_directory`, so that it
can be re-loaded using the :func:`~pytorch_transformers.PretrainedConfig.from_pretrained` class method.
"""
assert os.path.isdir(save_directory), "Saving path should be a directory where the model and configuration can be saved"
# If we save using the predefined names, we can load using `from_pretrained`
output_config_file = os.path.join(save_directory, CONFIG_NAME)
self.to_json_file(output_config_file)
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
r""" Instantiate a :class:`~pytorch_transformers.PretrainedConfig` (or a derived class) from a pre-trained model configuration.
Parameters:
pretrained_model_name_or_path: either:
- a string with the `shortcut name` of a pre-trained model configuration to load from cache or download, e.g.: ``bert-base-uncased``.
- a path to a `directory` containing a configuration file saved using the :func:`~pytorch_transformers.PretrainedConfig.save_pretrained` method, e.g.: ``./my_model_directory/``.
- a path or url to a saved configuration JSON `file`, e.g.: ``./my_model_directory/configuration.json``.
cache_dir: (`optional`) string:
Path to a directory in which a downloaded pre-trained model
configuration should be cached if the standard cache should not be used.
kwargs: (`optional`) dict: key/value pairs with which to update the configuration object after loading.
- The values in kwargs of any keys which are configuration attributes will be used to override the loaded values.
- Behavior concerning key/value pairs whose keys are *not* configuration attributes is controlled by the `return_unused_kwargs` keyword parameter.
force_download: (`optional`) boolean, default False:
Force to (re-)download the model weights and configuration files and override the cached versions if they exists.
proxies: (`optional`) dict, default None:
A dictionary of proxy servers to use by protocol or endpoint, e.g.: {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}.
The proxies are used on each request.
return_unused_kwargs: (`optional`) bool:
- If False, then this function returns just the final configuration object.
- If True, then this functions returns a tuple `(config, unused_kwargs)` where `unused_kwargs` is a dictionary consisting of the key/value pairs whose keys are not configuration attributes: ie the part of kwargs which has not been used to update `config` and is otherwise ignored.
Examples::
# We can't instantiate directly the base class `PretrainedConfig` so let's show the examples on a
# derived class: BertConfig
config = BertConfig.from_pretrained('bert-base-uncased') # Download configuration from S3 and cache.
config = BertConfig.from_pretrained('./test/saved_model/') # E.g. config (or model) was saved using `save_pretrained('./test/saved_model/')`
config = BertConfig.from_pretrained('./test/saved_model/my_configuration.json')
config = BertConfig.from_pretrained('bert-base-uncased', output_attention=True, foo=False)
assert config.output_attention == True
config, unused_kwargs = BertConfig.from_pretrained('bert-base-uncased', output_attention=True,
foo=False, return_unused_kwargs=True)
assert config.output_attention == True
assert unused_kwargs == {'foo': False}
"""
cache_dir = kwargs.pop('cache_dir', None)
force_download = kwargs.pop('force_download', False)
proxies = kwargs.pop('proxies', None)
return_unused_kwargs = kwargs.pop('return_unused_kwargs', False)
if pretrained_model_name_or_path in cls.pretrained_config_archive_map:
config_file = cls.pretrained_config_archive_map[pretrained_model_name_or_path]
elif os.path.isdir(pretrained_model_name_or_path):
config_file = os.path.join(pretrained_model_name_or_path, CONFIG_NAME)
else:
config_file = pretrained_model_name_or_path
# redirect to the cache, if necessary
try:
resolved_config_file = cached_path(config_file, cache_dir=cache_dir, force_download=force_download, proxies=proxies)
except EnvironmentError as e:
if pretrained_model_name_or_path in cls.pretrained_config_archive_map:
logger.error(
"Couldn't reach server at '{}' to download pretrained model configuration file.".format(
config_file))
else:
logger.error(
"Model name '{}' was not found in model name list ({}). "
"We assumed '{}' was a path or url but couldn't find any file "
"associated to this path or url.".format(
pretrained_model_name_or_path,
', '.join(cls.pretrained_config_archive_map.keys()),
config_file))
raise e
if resolved_config_file == config_file:
logger.info("loading configuration file {}".format(config_file))
else:
logger.info("loading configuration file {} from cache at {}".format(
config_file, resolved_config_file))
# Load config
config = cls.from_json_file(resolved_config_file)
if hasattr(config, 'pruned_heads'):
config.pruned_heads = dict((int(key), set(value)) for key, value in config.pruned_heads.items())
# Update config with kwargs if needed
to_remove = []
for key, value in kwargs.items():
if hasattr(config, key):
setattr(config, key, value)
to_remove.append(key)
for key in to_remove:
kwargs.pop(key, None)
logger.info("Model config %s", config)
if return_unused_kwargs:
return config, kwargs
else:
return config
@classmethod
def from_dict(cls, json_object):
"""Constructs a `Config` from a Python dictionary of parameters."""
config = cls(vocab_size_or_config_json_file=-1)
for key, value in json_object.items():
config.__dict__[key] = value
return config
@classmethod
def from_json_file(cls, json_file):
"""Constructs a `BertConfig` from a json file of parameters."""
with open(json_file, "r", encoding='utf-8') as reader:
text = reader.read()
return cls.from_dict(json.loads(text))
def __eq__(self, other):
return self.__dict__ == other.__dict__
def __repr__(self):
return str(self.to_json_string())
def to_dict(self):
"""Serializes this instance to a Python dictionary."""
output = copy.deepcopy(self.__dict__)
return output
def to_json_string(self):
"""Serializes this instance to a JSON string."""
return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n"
def to_json_file(self, json_file_path):
""" Save this instance to a json file."""
with open(json_file_path, "w", encoding='utf-8') as writer:
writer.write(self.to_json_string())