Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. | |
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""PyTorch BERT model. """ | |
from __future__ import absolute_import, division, print_function, unicode_literals | |
import json | |
import logging | |
import math | |
import os | |
import sys | |
from io import open | |
import pdb | |
import torch | |
from torch import nn | |
from torch.nn import CrossEntropyLoss, MSELoss | |
from .modeling_utils import PreTrainedModel, prune_linear_layer | |
from .configuration_bert import BertConfig | |
from .file_utils import add_start_docstrings | |
logger = logging.getLogger(__name__) | |
BERT_PRETRAINED_MODEL_ARCHIVE_MAP = { | |
'bert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-pytorch_model.bin", | |
'bert-large-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-pytorch_model.bin", | |
'bert-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-pytorch_model.bin", | |
'bert-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-pytorch_model.bin", | |
'bert-base-multilingual-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased-pytorch_model.bin", | |
'bert-base-multilingual-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased-pytorch_model.bin", | |
'bert-base-chinese': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese-pytorch_model.bin", | |
'bert-base-german-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-cased-pytorch_model.bin", | |
'bert-large-uncased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-pytorch_model.bin", | |
'bert-large-cased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-pytorch_model.bin", | |
'bert-large-uncased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-finetuned-squad-pytorch_model.bin", | |
'bert-large-cased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-finetuned-squad-pytorch_model.bin", | |
'bert-base-cased-finetuned-mrpc': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-finetuned-mrpc-pytorch_model.bin", | |
} | |
def load_tf_weights_in_bert(model, config, tf_checkpoint_path): | |
""" Load tf checkpoints in a pytorch model. | |
""" | |
try: | |
import re | |
import numpy as np | |
import tensorflow as tf | |
except ImportError: | |
logger.error("Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see " | |
"https://www.tensorflow.org/install/ for installation instructions.") | |
raise | |
tf_path = os.path.abspath(tf_checkpoint_path) | |
logger.info("Converting TensorFlow checkpoint from {}".format(tf_path)) | |
# Load weights from TF model | |
init_vars = tf.train.list_variables(tf_path) | |
names = [] | |
arrays = [] | |
for name, shape in init_vars: | |
logger.info("Loading TF weight {} with shape {}".format(name, shape)) | |
array = tf.train.load_variable(tf_path, name) | |
names.append(name) | |
arrays.append(array) | |
for name, array in zip(names, arrays): | |
name = name.split('/') | |
# adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v | |
# which are not required for using pretrained model | |
if any(n in ["adam_v", "adam_m", "global_step"] for n in name): | |
logger.info("Skipping {}".format("/".join(name))) | |
continue | |
pointer = model | |
for m_name in name: | |
if re.fullmatch(r'[A-Za-z]+_\d+', m_name): | |
l = re.split(r'_(\d+)', m_name) | |
else: | |
l = [m_name] | |
if l[0] == 'kernel' or l[0] == 'gamma': | |
pointer = getattr(pointer, 'weight') | |
elif l[0] == 'output_bias' or l[0] == 'beta': | |
pointer = getattr(pointer, 'bias') | |
elif l[0] == 'output_weights': | |
pointer = getattr(pointer, 'weight') | |
elif l[0] == 'squad': | |
pointer = getattr(pointer, 'classifier') | |
else: | |
try: | |
pointer = getattr(pointer, l[0]) | |
except AttributeError: | |
logger.info("Skipping {}".format("/".join(name))) | |
continue | |
if len(l) >= 2: | |
num = int(l[1]) | |
pointer = pointer[num] | |
if m_name[-11:] == '_embeddings': | |
pointer = getattr(pointer, 'weight') | |
elif m_name == 'kernel': | |
array = np.transpose(array) | |
try: | |
assert pointer.shape == array.shape | |
except AssertionError as e: | |
e.args += (pointer.shape, array.shape) | |
raise | |
logger.info("Initialize PyTorch weight {}".format(name)) | |
pointer.data = torch.from_numpy(array) | |
return model | |
def gelu(x): | |
"""Implementation of the gelu activation function. | |
For information: OpenAI GPT's gelu is slightly different (and gives slightly different results): | |
0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))) | |
Also see https://arxiv.org/abs/1606.08415 | |
""" | |
return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0))) | |
def swish(x): | |
return x * torch.sigmoid(x) | |
ACT2FN = {"gelu": gelu, "relu": torch.nn.functional.relu, "swish": swish} | |
try: | |
from apex.normalization.fused_layer_norm import FusedLayerNorm as BertLayerNorm | |
except (ImportError, AttributeError) as e: | |
logger.info("Better speed can be achieved with apex installed from https://www.github.com/nvidia/apex .") | |
BertLayerNorm = torch.nn.LayerNorm | |
class BertEmbeddings(nn.Module): | |
"""Construct the embeddings from word, position and token_type embeddings. | |
""" | |
def __init__(self, config): | |
super(BertEmbeddings, self).__init__() | |
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=0) | |
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) | |
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) | |
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load | |
# any TensorFlow checkpoint file | |
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
def forward(self, input_ids, token_type_ids=None, position_ids=None): | |
seq_length = input_ids.size(1) | |
if position_ids is None: | |
position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device) | |
position_ids = position_ids.unsqueeze(0).expand_as(input_ids) | |
if token_type_ids is None: | |
token_type_ids = torch.zeros_like(input_ids) | |
words_embeddings = self.word_embeddings(input_ids) | |
position_embeddings = self.position_embeddings(position_ids) | |
token_type_embeddings = self.token_type_embeddings(token_type_ids) | |
embeddings = words_embeddings + position_embeddings + token_type_embeddings | |
embeddings = self.LayerNorm(embeddings) | |
embeddings = self.dropout(embeddings) | |
return embeddings | |
class BertSelfAttention(nn.Module): | |
def __init__(self, config): | |
super(BertSelfAttention, self).__init__() | |
if config.hidden_size % config.num_attention_heads != 0: | |
raise ValueError( | |
"The hidden size (%d) is not a multiple of the number of attention " | |
"heads (%d)" % (config.hidden_size, config.num_attention_heads)) | |
self.output_attentions = config.output_attentions | |
self.num_attention_heads = config.num_attention_heads | |
self.attention_head_size = int(config.hidden_size / config.num_attention_heads) | |
self.all_head_size = self.num_attention_heads * self.attention_head_size | |
self.query = nn.Linear(config.hidden_size, self.all_head_size) | |
self.key = nn.Linear(config.hidden_size, self.all_head_size) | |
self.value = nn.Linear(config.hidden_size, self.all_head_size) | |
self.dropout = nn.Dropout(config.attention_probs_dropout_prob) | |
def transpose_for_scores(self, x): | |
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) | |
x = x.view(*new_x_shape) | |
return x.permute(0, 2, 1, 3) | |
def forward(self, hidden_states, attention_mask, head_mask=None): | |
mixed_query_layer = self.query(hidden_states) | |
mixed_key_layer = self.key(hidden_states) | |
mixed_value_layer = self.value(hidden_states) | |
query_layer = self.transpose_for_scores(mixed_query_layer) | |
key_layer = self.transpose_for_scores(mixed_key_layer) | |
value_layer = self.transpose_for_scores(mixed_value_layer) | |
# Take the dot product between "query" and "key" to get the raw attention scores. | |
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) | |
attention_scores = attention_scores / math.sqrt(self.attention_head_size) | |
# Apply the attention mask is (precomputed for all layers in BertModel forward() function) | |
attention_scores = attention_scores + attention_mask | |
# Normalize the attention scores to probabilities. | |
attention_probs = nn.Softmax(dim=-1)(attention_scores) | |
# This is actually dropping out entire tokens to attend to, which might | |
# seem a bit unusual, but is taken from the original Transformer paper. | |
attention_probs = self.dropout(attention_probs) | |
# Mask heads if we want to | |
if head_mask is not None: | |
attention_probs = attention_probs * head_mask | |
context_layer = torch.matmul(attention_probs, value_layer) | |
context_layer = context_layer.permute(0, 2, 1, 3).contiguous() | |
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) | |
context_layer = context_layer.view(*new_context_layer_shape) | |
outputs = (context_layer, attention_probs) if self.output_attentions else (context_layer,) | |
return outputs | |
class BertSelfOutput(nn.Module): | |
def __init__(self, config): | |
super(BertSelfOutput, self).__init__() | |
self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
def forward(self, hidden_states, input_tensor): | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
hidden_states = self.LayerNorm(hidden_states + input_tensor) | |
return hidden_states | |
class BertAttention(nn.Module): | |
def __init__(self, config): | |
super(BertAttention, self).__init__() | |
self.self = BertSelfAttention(config) | |
self.output = BertSelfOutput(config) | |
self.pruned_heads = set() | |
def prune_heads(self, heads): | |
if len(heads) == 0: | |
return | |
mask = torch.ones(self.self.num_attention_heads, self.self.attention_head_size) | |
heads = set(heads) - self.pruned_heads # Convert to set and emove already pruned heads | |
for head in heads: | |
# Compute how many pruned heads are before the head and move the index accordingly | |
head = head - sum(1 if h < head else 0 for h in self.pruned_heads) | |
mask[head] = 0 | |
mask = mask.view(-1).contiguous().eq(1) | |
index = torch.arange(len(mask))[mask].long() | |
# Prune linear layers | |
self.self.query = prune_linear_layer(self.self.query, index) | |
self.self.key = prune_linear_layer(self.self.key, index) | |
self.self.value = prune_linear_layer(self.self.value, index) | |
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) | |
# Update hyper params and store pruned heads | |
self.self.num_attention_heads = self.self.num_attention_heads - len(heads) | |
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads | |
self.pruned_heads = self.pruned_heads.union(heads) | |
def forward(self, input_tensor, attention_mask, head_mask=None): | |
self_outputs = self.self(input_tensor, attention_mask, head_mask) | |
attention_output = self.output(self_outputs[0], input_tensor) | |
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them | |
return outputs | |
class BertIntermediate(nn.Module): | |
def __init__(self, config): | |
super(BertIntermediate, self).__init__() | |
self.dense = nn.Linear(config.hidden_size, config.intermediate_size) | |
if isinstance(config.hidden_act, str) or (sys.version_info[0] == 2 and isinstance(config.hidden_act, unicode)): | |
self.intermediate_act_fn = ACT2FN[config.hidden_act] | |
else: | |
self.intermediate_act_fn = config.hidden_act | |
def forward(self, hidden_states): | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.intermediate_act_fn(hidden_states) | |
return hidden_states | |
class BertOutput(nn.Module): | |
def __init__(self, config): | |
super(BertOutput, self).__init__() | |
self.dense = nn.Linear(config.intermediate_size, config.hidden_size) | |
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
def forward(self, hidden_states, input_tensor): | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
hidden_states = self.LayerNorm(hidden_states + input_tensor) | |
return hidden_states | |
class BertLayer(nn.Module): | |
def __init__(self, config): | |
super(BertLayer, self).__init__() | |
self.attention = BertAttention(config) | |
self.intermediate = BertIntermediate(config) | |
self.output = BertOutput(config) | |
def forward(self, hidden_states, attention_mask, head_mask=None): | |
attention_outputs = self.attention(hidden_states, attention_mask, head_mask) | |
attention_output = attention_outputs[0] | |
intermediate_output = self.intermediate(attention_output) | |
layer_output = self.output(intermediate_output, attention_output) | |
outputs = (layer_output,) + attention_outputs[1:] # add attentions if we output them | |
return outputs | |
class BertEncoder(nn.Module): | |
def __init__(self, config): | |
super(BertEncoder, self).__init__() | |
self.output_attentions = config.output_attentions | |
self.output_hidden_states = config.output_hidden_states | |
self.layer = nn.ModuleList([BertLayer(config) for _ in range(config.num_hidden_layers)]) | |
def forward(self, hidden_states, attention_mask, head_mask=None): | |
all_hidden_states = () | |
all_attentions = () | |
for i, layer_module in enumerate(self.layer): | |
if self.output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
layer_outputs = layer_module(hidden_states, attention_mask, head_mask[i]) | |
hidden_states = layer_outputs[0] | |
if self.output_attentions: | |
all_attentions = all_attentions + (layer_outputs[1],) | |
# Add last layer | |
if self.output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
outputs = (hidden_states,) | |
if self.output_hidden_states: | |
outputs = outputs + (all_hidden_states,) | |
if self.output_attentions: | |
outputs = outputs + (all_attentions,) | |
return outputs # last-layer hidden state, (all hidden states), (all attentions) | |
class BertPooler(nn.Module): | |
def __init__(self, config): | |
super(BertPooler, self).__init__() | |
self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
self.activation = nn.Tanh() | |
def forward(self, hidden_states): | |
# We "pool" the model by simply taking the hidden state corresponding | |
# to the first token. | |
first_token_tensor = hidden_states[:, 0] | |
pooled_output = self.dense(first_token_tensor) | |
pooled_output = self.activation(pooled_output) | |
return pooled_output | |
class BertPredictionHeadTransform(nn.Module): | |
def __init__(self, config): | |
super(BertPredictionHeadTransform, self).__init__() | |
self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
if isinstance(config.hidden_act, str) or (sys.version_info[0] == 2 and isinstance(config.hidden_act, unicode)): | |
self.transform_act_fn = ACT2FN[config.hidden_act] | |
else: | |
self.transform_act_fn = config.hidden_act | |
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
def forward(self, hidden_states): | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.transform_act_fn(hidden_states) | |
hidden_states = self.LayerNorm(hidden_states) | |
return hidden_states | |
class BertLMPredictionHead(nn.Module): | |
def __init__(self, config): | |
super(BertLMPredictionHead, self).__init__() | |
self.transform = BertPredictionHeadTransform(config) | |
# The output weights are the same as the input embeddings, but there is | |
# an output-only bias for each token. | |
self.decoder = nn.Linear(config.hidden_size, | |
config.vocab_size, | |
bias=False) | |
self.bias = nn.Parameter(torch.zeros(config.vocab_size)) | |
def forward(self, hidden_states): | |
hidden_states = self.transform(hidden_states) | |
hidden_states = self.decoder(hidden_states) + self.bias | |
return hidden_states | |
class BertOnlyMLMHead(nn.Module): | |
def __init__(self, config): | |
super(BertOnlyMLMHead, self).__init__() | |
self.predictions = BertLMPredictionHead(config) | |
def forward(self, sequence_output): | |
prediction_scores = self.predictions(sequence_output) | |
return prediction_scores | |
class BertOnlyNSPHead(nn.Module): | |
def __init__(self, config): | |
super(BertOnlyNSPHead, self).__init__() | |
self.seq_relationship = nn.Linear(config.hidden_size, 2) | |
def forward(self, pooled_output): | |
seq_relationship_score = self.seq_relationship(pooled_output) | |
return seq_relationship_score | |
class BertPreTrainingHeads(nn.Module): | |
def __init__(self, config): | |
super(BertPreTrainingHeads, self).__init__() | |
self.predictions = BertLMPredictionHead(config) | |
self.seq_relationship = nn.Linear(config.hidden_size, 2) | |
def forward(self, sequence_output, pooled_output): | |
prediction_scores = self.predictions(sequence_output) | |
seq_relationship_score = self.seq_relationship(pooled_output) | |
return prediction_scores, seq_relationship_score | |
class BertPreTrainedModel(PreTrainedModel): | |
""" An abstract class to handle weights initialization and | |
a simple interface for dowloading and loading pretrained models. | |
""" | |
config_class = BertConfig | |
pretrained_model_archive_map = BERT_PRETRAINED_MODEL_ARCHIVE_MAP | |
load_tf_weights = load_tf_weights_in_bert | |
base_model_prefix = "bert" | |
def _init_weights(self, module): | |
""" Initialize the weights """ | |
if isinstance(module, (nn.Linear, nn.Embedding)): | |
# Slightly different from the TF version which uses truncated_normal for initialization | |
# cf https://github.com/pytorch/pytorch/pull/5617 | |
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
elif isinstance(module, BertLayerNorm): | |
module.bias.data.zero_() | |
module.weight.data.fill_(1.0) | |
if isinstance(module, nn.Linear) and module.bias is not None: | |
module.bias.data.zero_() | |
BERT_START_DOCSTRING = r""" The BERT model was proposed in | |
`BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding`_ | |
by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova. It's a bidirectional transformer | |
pre-trained using a combination of masked language modeling objective and next sentence prediction | |
on a large corpus comprising the Toronto Book Corpus and Wikipedia. | |
This model is a PyTorch `torch.nn.Module`_ sub-class. Use it as a regular PyTorch Module and | |
refer to the PyTorch documentation for all matter related to general usage and behavior. | |
.. _`BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding`: | |
https://arxiv.org/abs/1810.04805 | |
.. _`torch.nn.Module`: | |
https://pytorch.org/docs/stable/nn.html#module | |
Parameters: | |
config (:class:`~pytorch_transformers.BertConfig`): Model configuration class with all the parameters of the model. | |
Initializing with a config file does not load the weights associated with the model, only the configuration. | |
Check out the :meth:`~pytorch_transformers.PreTrainedModel.from_pretrained` method to load the model weights. | |
""" | |
BERT_INPUTS_DOCSTRING = r""" | |
Inputs: | |
**input_ids**: ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``: | |
Indices of input sequence tokens in the vocabulary. | |
To match pre-training, BERT input sequence should be formatted with [CLS] and [SEP] tokens as follows: | |
(a) For sequence pairs: | |
``tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]`` | |
``token_type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1`` | |
(b) For single sequences: | |
``tokens: [CLS] the dog is hairy . [SEP]`` | |
``token_type_ids: 0 0 0 0 0 0 0`` | |
Bert is a model with absolute position embeddings so it's usually advised to pad the inputs on | |
the right rather than the left. | |
Indices can be obtained using :class:`pytorch_transformers.BertTokenizer`. | |
See :func:`pytorch_transformers.PreTrainedTokenizer.encode` and | |
:func:`pytorch_transformers.PreTrainedTokenizer.convert_tokens_to_ids` for details. | |
**attention_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, sequence_length)``: | |
Mask to avoid performing attention on padding token indices. | |
Mask values selected in ``[0, 1]``: | |
``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens. | |
**token_type_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``: | |
Segment token indices to indicate first and second portions of the inputs. | |
Indices are selected in ``[0, 1]``: ``0`` corresponds to a `sentence A` token, ``1`` | |
corresponds to a `sentence B` token | |
(see `BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding`_ for more details). | |
**position_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``: | |
Indices of positions of each input sequence tokens in the position embeddings. | |
Selected in the range ``[0, config.max_position_embeddings - 1]``. | |
**head_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(num_heads,)`` or ``(num_layers, num_heads)``: | |
Mask to nullify selected heads of the self-attention modules. | |
Mask values selected in ``[0, 1]``: | |
``1`` indicates the head is **not masked**, ``0`` indicates the head is **masked**. | |
""" | |
class BertModel(BertPreTrainedModel): | |
r""" | |
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: | |
**last_hidden_state**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, hidden_size)`` | |
Sequence of hidden-states at the output of the last layer of the model. | |
**pooler_output**: ``torch.FloatTensor`` of shape ``(batch_size, hidden_size)`` | |
Last layer hidden-state of the first token of the sequence (classification token) | |
further processed by a Linear layer and a Tanh activation function. The Linear | |
layer weights are trained from the next sentence prediction (classification) | |
objective during Bert pretraining. This output is usually *not* a good summary | |
of the semantic content of the input, you're often better with averaging or pooling | |
the sequence of hidden-states for the whole input sequence. | |
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``) | |
list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings) | |
of shape ``(batch_size, sequence_length, hidden_size)``: | |
Hidden-states of the model at the output of each layer plus the initial embedding outputs. | |
**attentions**: (`optional`, returned when ``config.output_attentions=True``) | |
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: | |
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. | |
Examples:: | |
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') | |
model = BertModel.from_pretrained('bert-base-uncased') | |
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 | |
outputs = model(input_ids) | |
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple | |
""" | |
def __init__(self, config): | |
super(BertModel, self).__init__(config) | |
self.embeddings = BertEmbeddings(config) | |
self.encoder = BertEncoder(config) | |
self.pooler = BertPooler(config) | |
self.init_weights() | |
def _resize_token_embeddings(self, new_num_tokens): | |
old_embeddings = self.embeddings.word_embeddings | |
new_embeddings = self._get_resized_embeddings(old_embeddings, new_num_tokens) | |
self.embeddings.word_embeddings = new_embeddings | |
return self.embeddings.word_embeddings | |
def _prune_heads(self, heads_to_prune): | |
""" Prunes heads of the model. | |
heads_to_prune: dict of {layer_num: list of heads to prune in this layer} | |
See base class PreTrainedModel | |
""" | |
for layer, heads in heads_to_prune.items(): | |
self.encoder.layer[layer].attention.prune_heads(heads) | |
def forward(self, input_ids, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None): | |
if attention_mask is None: | |
attention_mask = torch.ones_like(input_ids) | |
if token_type_ids is None: | |
token_type_ids = torch.zeros_like(input_ids) | |
# We create a 3D attention mask from a 2D tensor mask. | |
# Sizes are [batch_size, 1, 1, to_seq_length] | |
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] | |
# this attention mask is more simple than the triangular masking of causal attention | |
# used in OpenAI GPT, we just need to prepare the broadcast dimension here. | |
extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) | |
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for | |
# masked positions, this operation will create a tensor which is 0.0 for | |
# positions we want to attend and -10000.0 for masked positions. | |
# Since we are adding it to the raw scores before the softmax, this is | |
# effectively the same as removing these entirely. | |
extended_attention_mask = extended_attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility | |
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 | |
# Prepare head mask if needed | |
# 1.0 in head_mask indicate we keep the head | |
# attention_probs has shape bsz x n_heads x N x N | |
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] | |
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] | |
if head_mask is not None: | |
if head_mask.dim() == 1: | |
head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1) | |
head_mask = head_mask.expand(self.config.num_hidden_layers, -1, -1, -1, -1) | |
elif head_mask.dim() == 2: | |
head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1) # We can specify head_mask for each layer | |
head_mask = head_mask.to(dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility | |
else: | |
head_mask = [None] * self.config.num_hidden_layers | |
embedding_output = self.embeddings(input_ids, position_ids=position_ids, token_type_ids=token_type_ids) | |
encoder_outputs = self.encoder(embedding_output, | |
extended_attention_mask, | |
head_mask=head_mask) | |
sequence_output = encoder_outputs[0] | |
pooled_output = self.pooler(sequence_output) | |
outputs = (sequence_output, pooled_output,) + encoder_outputs[1:] # add hidden_states and attentions if they are here | |
return outputs # sequence_output, pooled_output, (hidden_states), (attentions) | |
class BertForLatentConnector(BertPreTrainedModel): | |
r""" | |
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: | |
**last_hidden_state**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, hidden_size)`` | |
Sequence of hidden-states at the output of the last layer of the model. | |
**pooler_output**: ``torch.FloatTensor`` of shape ``(batch_size, hidden_size)`` | |
Last layer hidden-state of the first token of the sequence (classification token) | |
further processed by a Linear layer and a Tanh activation function. The Linear | |
layer weights are trained from the next sentence prediction (classification) | |
objective during Bert pretraining. This output is usually *not* a good summary | |
of the semantic content of the input, you're often better with averaging or pooling | |
the sequence of hidden-states for the whole input sequence. | |
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``) | |
list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings) | |
of shape ``(batch_size, sequence_length, hidden_size)``: | |
Hidden-states of the model at the output of each layer plus the initial embedding outputs. | |
**attentions**: (`optional`, returned when ``config.output_attentions=True``) | |
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: | |
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. | |
Examples:: | |
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') | |
model = BertModel.from_pretrained('bert-base-uncased') | |
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 | |
outputs = model(input_ids) | |
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple | |
""" | |
def __init__(self, config, latent_size): | |
super(BertForLatentConnector, self).__init__(config) | |
self.embeddings = BertEmbeddings(config) | |
self.encoder = BertEncoder(config) | |
self.pooler = BertPooler(config) | |
self.linear = nn.Linear(config.hidden_size, 2 * latent_size, bias=False) | |
self.init_weights() | |
def _resize_token_embeddings(self, new_num_tokens): | |
old_embeddings = self.embeddings.word_embeddings | |
new_embeddings = self._get_resized_embeddings(old_embeddings, new_num_tokens) | |
self.embeddings.word_embeddings = new_embeddings | |
return self.embeddings.word_embeddings | |
def _prune_heads(self, heads_to_prune): | |
""" Prunes heads of the model. | |
heads_to_prune: dict of {layer_num: list of heads to prune in this layer} | |
See base class PreTrainedModel | |
""" | |
for layer, heads in heads_to_prune.items(): | |
self.encoder.layer[layer].attention.prune_heads(heads) | |
def forward(self, input_ids, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None): | |
if attention_mask is None: | |
attention_mask = torch.ones_like(input_ids) | |
if token_type_ids is None: | |
token_type_ids = torch.zeros_like(input_ids) | |
# We create a 3D attention mask from a 2D tensor mask. | |
# Sizes are [batch_size, 1, 1, to_seq_length] | |
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] | |
# this attention mask is more simple than the triangular masking of causal attention | |
# used in OpenAI GPT, we just need to prepare the broadcast dimension here. | |
extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) | |
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for | |
# masked positions, this operation will create a tensor which is 0.0 for | |
# positions we want to attend and -10000.0 for masked positions. | |
# Since we are adding it to the raw scores before the softmax, this is | |
# effectively the same as removing these entirely. | |
extended_attention_mask = extended_attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility | |
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 | |
# Prepare head mask if needed | |
# 1.0 in head_mask indicate we keep the head | |
# attention_probs has shape bsz x n_heads x N x N | |
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] | |
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] | |
if head_mask is not None: | |
if head_mask.dim() == 1: | |
head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1) | |
head_mask = head_mask.expand(self.config.num_hidden_layers, -1, -1, -1, -1) | |
elif head_mask.dim() == 2: | |
head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1) # We can specify head_mask for each layer | |
head_mask = head_mask.to(dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility | |
else: | |
head_mask = [None] * self.config.num_hidden_layers | |
embedding_output = self.embeddings(input_ids, position_ids=position_ids, token_type_ids=token_type_ids) | |
encoder_outputs = self.encoder(embedding_output, | |
extended_attention_mask, | |
head_mask=head_mask) | |
sequence_output = encoder_outputs[0] | |
pooled_output = self.pooler(sequence_output) | |
outputs = (sequence_output, pooled_output,) + encoder_outputs[1:] # add hidden_states and attentions if they are here | |
return outputs # sequence_output, pooled_output, (hidden_states), (attentions) | |
class BertForPreTraining(BertPreTrainedModel): | |
r""" | |
**masked_lm_labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``: | |
Labels for computing the masked language modeling loss. | |
Indices should be in ``[-1, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) | |
Tokens with indices set to ``-1`` are ignored (masked), the loss is only computed for the tokens with labels | |
in ``[0, ..., config.vocab_size]`` | |
**next_sentence_label**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``: | |
Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see ``input_ids`` docstring) | |
Indices should be in ``[0, 1]``. | |
``0`` indicates sequence B is a continuation of sequence A, | |
``1`` indicates sequence B is a random sequence. | |
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: | |
**loss**: (`optional`, returned when both ``masked_lm_labels`` and ``next_sentence_label`` are provided) ``torch.FloatTensor`` of shape ``(1,)``: | |
Total loss as the sum of the masked language modeling loss and the next sequence prediction (classification) loss. | |
**prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, config.vocab_size)`` | |
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). | |
**seq_relationship_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, 2)`` | |
Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax). | |
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``) | |
list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings) | |
of shape ``(batch_size, sequence_length, hidden_size)``: | |
Hidden-states of the model at the output of each layer plus the initial embedding outputs. | |
**attentions**: (`optional`, returned when ``config.output_attentions=True``) | |
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: | |
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. | |
Examples:: | |
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') | |
model = BertForPreTraining.from_pretrained('bert-base-uncased') | |
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 | |
outputs = model(input_ids) | |
prediction_scores, seq_relationship_scores = outputs[:2] | |
""" | |
def __init__(self, config): | |
super(BertForPreTraining, self).__init__(config) | |
self.bert = BertModel(config) | |
self.cls = BertPreTrainingHeads(config) | |
self.init_weights() | |
self.tie_weights() | |
def tie_weights(self): | |
""" Make sure we are sharing the input and output embeddings. | |
Export to TorchScript can't handle parameter sharing so we are cloning them instead. | |
""" | |
self._tie_or_clone_weights(self.cls.predictions.decoder, | |
self.bert.embeddings.word_embeddings) | |
def forward(self, input_ids, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, | |
masked_lm_labels=None, next_sentence_label=None): | |
outputs = self.bert(input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask) | |
sequence_output, pooled_output = outputs[:2] | |
prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output) | |
outputs = (prediction_scores, seq_relationship_score,) + outputs[2:] # add hidden states and attention if they are here | |
if masked_lm_labels is not None and next_sentence_label is not None: | |
loss_fct = CrossEntropyLoss(ignore_index=-1) | |
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), masked_lm_labels.view(-1)) | |
next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1)) | |
total_loss = masked_lm_loss + next_sentence_loss | |
outputs = (total_loss,) + outputs | |
return outputs # (loss), prediction_scores, seq_relationship_score, (hidden_states), (attentions) | |
class BertForMaskedLM(BertPreTrainedModel): | |
r""" | |
**masked_lm_labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``: | |
Labels for computing the masked language modeling loss. | |
Indices should be in ``[-1, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) | |
Tokens with indices set to ``-1`` are ignored (masked), the loss is only computed for the tokens with labels | |
in ``[0, ..., config.vocab_size]`` | |
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: | |
**loss**: (`optional`, returned when ``masked_lm_labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``: | |
Masked language modeling loss. | |
**prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, config.vocab_size)`` | |
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). | |
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``) | |
list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings) | |
of shape ``(batch_size, sequence_length, hidden_size)``: | |
Hidden-states of the model at the output of each layer plus the initial embedding outputs. | |
**attentions**: (`optional`, returned when ``config.output_attentions=True``) | |
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: | |
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. | |
Examples:: | |
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') | |
model = BertForMaskedLM.from_pretrained('bert-base-uncased') | |
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 | |
outputs = model(input_ids, masked_lm_labels=input_ids) | |
loss, prediction_scores = outputs[:2] | |
""" | |
def __init__(self, config): | |
super(BertForMaskedLM, self).__init__(config) | |
self.bert = BertModel(config) | |
self.cls = BertOnlyMLMHead(config) | |
self.init_weights() | |
self.tie_weights() | |
def tie_weights(self): | |
""" Make sure we are sharing the input and output embeddings. | |
Export to TorchScript can't handle parameter sharing so we are cloning them instead. | |
""" | |
self._tie_or_clone_weights(self.cls.predictions.decoder, | |
self.bert.embeddings.word_embeddings) | |
def forward(self, input_ids, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, | |
masked_lm_labels=None): | |
outputs = self.bert(input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask) | |
sequence_output = outputs[0] | |
prediction_scores = self.cls(sequence_output) | |
outputs = (prediction_scores,) + outputs[2:] # Add hidden states and attention if they are here | |
if masked_lm_labels is not None: | |
loss_fct = CrossEntropyLoss(ignore_index=-1) | |
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), masked_lm_labels.view(-1)) | |
outputs = (masked_lm_loss,) + outputs | |
return outputs # (masked_lm_loss), prediction_scores, (hidden_states), (attentions) | |
class BertForNextSentencePrediction(BertPreTrainedModel): | |
r""" | |
**next_sentence_label**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``: | |
Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see ``input_ids`` docstring) | |
Indices should be in ``[0, 1]``. | |
``0`` indicates sequence B is a continuation of sequence A, | |
``1`` indicates sequence B is a random sequence. | |
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: | |
**loss**: (`optional`, returned when ``next_sentence_label`` is provided) ``torch.FloatTensor`` of shape ``(1,)``: | |
Next sequence prediction (classification) loss. | |
**seq_relationship_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, 2)`` | |
Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax). | |
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``) | |
list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings) | |
of shape ``(batch_size, sequence_length, hidden_size)``: | |
Hidden-states of the model at the output of each layer plus the initial embedding outputs. | |
**attentions**: (`optional`, returned when ``config.output_attentions=True``) | |
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: | |
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. | |
Examples:: | |
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') | |
model = BertForNextSentencePrediction.from_pretrained('bert-base-uncased') | |
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 | |
outputs = model(input_ids) | |
seq_relationship_scores = outputs[0] | |
""" | |
def __init__(self, config): | |
super(BertForNextSentencePrediction, self).__init__(config) | |
self.bert = BertModel(config) | |
self.cls = BertOnlyNSPHead(config) | |
self.init_weights() | |
def forward(self, input_ids, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, | |
next_sentence_label=None): | |
outputs = self.bert(input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask) | |
pooled_output = outputs[1] | |
seq_relationship_score = self.cls(pooled_output) | |
outputs = (seq_relationship_score,) + outputs[2:] # add hidden states and attention if they are here | |
if next_sentence_label is not None: | |
loss_fct = CrossEntropyLoss(ignore_index=-1) | |
next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1)) | |
outputs = (next_sentence_loss,) + outputs | |
return outputs # (next_sentence_loss), seq_relationship_score, (hidden_states), (attentions) | |
class BertForSequenceClassification(BertPreTrainedModel): | |
r""" | |
**labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``: | |
Labels for computing the sequence classification/regression loss. | |
Indices should be in ``[0, ..., config.num_labels - 1]``. | |
If ``config.num_labels == 1`` a regression loss is computed (Mean-Square loss), | |
If ``config.num_labels > 1`` a classification loss is computed (Cross-Entropy). | |
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: | |
**loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``: | |
Classification (or regression if config.num_labels==1) loss. | |
**logits**: ``torch.FloatTensor`` of shape ``(batch_size, config.num_labels)`` | |
Classification (or regression if config.num_labels==1) scores (before SoftMax). | |
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``) | |
list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings) | |
of shape ``(batch_size, sequence_length, hidden_size)``: | |
Hidden-states of the model at the output of each layer plus the initial embedding outputs. | |
**attentions**: (`optional`, returned when ``config.output_attentions=True``) | |
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: | |
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. | |
Examples:: | |
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') | |
model = BertForSequenceClassification.from_pretrained('bert-base-uncased') | |
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 | |
labels = torch.tensor([1]).unsqueeze(0) # Batch size 1 | |
outputs = model(input_ids, labels=labels) | |
loss, logits = outputs[:2] | |
""" | |
def __init__(self, config): | |
super(BertForSequenceClassification, self).__init__(config) | |
self.num_labels = config.num_labels | |
self.bert = BertModel(config) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
self.classifier = nn.Linear(config.hidden_size, self.config.num_labels) | |
self.use_freeze = False | |
self.init_weights() | |
def forward(self, input_ids, attention_mask=None, token_type_ids=None, | |
position_ids=None, head_mask=None, labels=None): | |
outputs = self.bert(input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask) | |
pooled_output = outputs[1] | |
if self.use_freeze: | |
pooled_output = pooled_output.detach() | |
pooled_output = self.dropout(pooled_output) | |
logits = self.classifier(pooled_output) | |
outputs = (logits,) + outputs[2:] # add hidden states and attention if they are here | |
if labels is not None: | |
if self.num_labels == 1: | |
# We are doing regression | |
loss_fct = MSELoss() | |
loss = loss_fct(logits.view(-1), labels.view(-1)) | |
else: | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) | |
outputs = (loss,) + outputs | |
# pdb.set_trace() | |
return outputs, pooled_output # (loss), logits, (hidden_states), (attentions) | |
class BertForSequenceClassificationLatentConnector(BertPreTrainedModel): | |
r""" | |
**labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``: | |
Labels for computing the sequence classification/regression loss. | |
Indices should be in ``[0, ..., config.num_labels - 1]``. | |
If ``config.num_labels == 1`` a regression loss is computed (Mean-Square loss), | |
If ``config.num_labels > 1`` a classification loss is computed (Cross-Entropy). | |
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: | |
**loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``: | |
Classification (or regression if config.num_labels==1) loss. | |
**logits**: ``torch.FloatTensor`` of shape ``(batch_size, config.num_labels)`` | |
Classification (or regression if config.num_labels==1) scores (before SoftMax). | |
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``) | |
list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings) | |
of shape ``(batch_size, sequence_length, hidden_size)``: | |
Hidden-states of the model at the output of each layer plus the initial embedding outputs. | |
**attentions**: (`optional`, returned when ``config.output_attentions=True``) | |
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: | |
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. | |
Examples:: | |
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') | |
model = BertForSequenceClassificationLatentConnector.from_pretrained('bert-base-uncased') | |
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 | |
labels = torch.tensor([1]).unsqueeze(0) # Batch size 1 | |
outputs = model(input_ids, labels=labels) | |
loss, logits = outputs[:2] | |
""" | |
def __init__(self, config, latent_size): | |
super(BertForSequenceClassificationLatentConnector, self).__init__(config) | |
self.num_labels = config.num_labels | |
self.bert = BertModel(config) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
self.classifier = nn.Linear(config.hidden_size, self.config.num_labels) | |
self.linear = nn.Linear(config.hidden_size, 2 * latent_size, bias=False) | |
self.use_freeze = False | |
self.init_weights() | |
def forward(self, input_ids, attention_mask=None, token_type_ids=None, | |
position_ids=None, head_mask=None, labels=None): | |
outputs = self.bert(input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask) | |
pooled_output = outputs[1] | |
# mean, logvar = self.linear(pooled_output).chunk(2, -1) | |
if self.use_freeze: | |
pooled_output = pooled_output.detach() | |
pooled_output = self.dropout(pooled_output) | |
logits = self.classifier(pooled_output) | |
outputs = (logits,) + outputs[2:] # add hidden states and attention if they are here | |
if labels is not None: | |
if self.num_labels == 1: | |
# We are doing regression | |
loss_fct = MSELoss() | |
loss = loss_fct(logits.view(-1), labels.view(-1)) | |
else: | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) | |
outputs = (loss,) + outputs | |
return outputs, pooled_output # (loss), logits, (hidden_states), (attentions) | |
class BertForMultipleChoice(BertPreTrainedModel): | |
r""" | |
**labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``: | |
Labels for computing the multiple choice classification loss. | |
Indices should be in ``[0, ..., num_choices]`` where `num_choices` is the size of the second dimension | |
of the input tensors. (see `input_ids` above) | |
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: | |
**loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``: | |
Classification loss. | |
**classification_scores**: ``torch.FloatTensor`` of shape ``(batch_size, num_choices)`` where `num_choices` is the size of the second dimension | |
of the input tensors. (see `input_ids` above). | |
Classification scores (before SoftMax). | |
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``) | |
list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings) | |
of shape ``(batch_size, sequence_length, hidden_size)``: | |
Hidden-states of the model at the output of each layer plus the initial embedding outputs. | |
**attentions**: (`optional`, returned when ``config.output_attentions=True``) | |
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: | |
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. | |
Examples:: | |
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') | |
model = BertForMultipleChoice.from_pretrained('bert-base-uncased') | |
choices = ["Hello, my dog is cute", "Hello, my cat is amazing"] | |
input_ids = torch.tensor([tokenizer.encode(s) for s in choices]).unsqueeze(0) # Batch size 1, 2 choices | |
labels = torch.tensor(1).unsqueeze(0) # Batch size 1 | |
outputs = model(input_ids, labels=labels) | |
loss, classification_scores = outputs[:2] | |
""" | |
def __init__(self, config): | |
super(BertForMultipleChoice, self).__init__(config) | |
self.bert = BertModel(config) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
self.classifier = nn.Linear(config.hidden_size, 1) | |
self.init_weights() | |
def forward(self, input_ids, attention_mask=None, token_type_ids=None, | |
position_ids=None, head_mask=None, labels=None): | |
num_choices = input_ids.shape[1] | |
input_ids = input_ids.view(-1, input_ids.size(-1)) | |
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None | |
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None | |
position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None | |
outputs = self.bert(input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask) | |
pooled_output = outputs[1] | |
pooled_output = self.dropout(pooled_output) | |
logits = self.classifier(pooled_output) | |
reshaped_logits = logits.view(-1, num_choices) | |
outputs = (reshaped_logits,) + outputs[2:] # add hidden states and attention if they are here | |
if labels is not None: | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(reshaped_logits, labels) | |
outputs = (loss,) + outputs | |
return outputs # (loss), reshaped_logits, (hidden_states), (attentions) | |
class BertForTokenClassification(BertPreTrainedModel): | |
r""" | |
**labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``: | |
Labels for computing the token classification loss. | |
Indices should be in ``[0, ..., config.num_labels - 1]``. | |
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: | |
**loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``: | |
Classification loss. | |
**scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, config.num_labels)`` | |
Classification scores (before SoftMax). | |
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``) | |
list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings) | |
of shape ``(batch_size, sequence_length, hidden_size)``: | |
Hidden-states of the model at the output of each layer plus the initial embedding outputs. | |
**attentions**: (`optional`, returned when ``config.output_attentions=True``) | |
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: | |
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. | |
Examples:: | |
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') | |
model = BertForTokenClassification.from_pretrained('bert-base-uncased') | |
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 | |
labels = torch.tensor([1] * input_ids.size(1)).unsqueeze(0) # Batch size 1 | |
outputs = model(input_ids, labels=labels) | |
loss, scores = outputs[:2] | |
""" | |
def __init__(self, config): | |
super(BertForTokenClassification, self).__init__(config) | |
self.num_labels = config.num_labels | |
self.bert = BertModel(config) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
self.classifier = nn.Linear(config.hidden_size, config.num_labels) | |
self.init_weights() | |
def forward(self, input_ids, attention_mask=None, token_type_ids=None, | |
position_ids=None, head_mask=None, labels=None): | |
outputs = self.bert(input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask) | |
sequence_output = outputs[0] | |
sequence_output = self.dropout(sequence_output) | |
logits = self.classifier(sequence_output) | |
outputs = (logits,) + outputs[2:] # add hidden states and attention if they are here | |
if labels is not None: | |
loss_fct = CrossEntropyLoss() | |
# Only keep active parts of the loss | |
if attention_mask is not None: | |
active_loss = attention_mask.view(-1) == 1 | |
active_logits = logits.view(-1, self.num_labels)[active_loss] | |
active_labels = labels.view(-1)[active_loss] | |
loss = loss_fct(active_logits, active_labels) | |
else: | |
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) | |
outputs = (loss,) + outputs | |
return outputs # (loss), scores, (hidden_states), (attentions) | |
class BertForQuestionAnswering(BertPreTrainedModel): | |
r""" | |
**start_positions**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``: | |
Labels for position (index) of the start of the labelled span for computing the token classification loss. | |
Positions are clamped to the length of the sequence (`sequence_length`). | |
Position outside of the sequence are not taken into account for computing the loss. | |
**end_positions**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``: | |
Labels for position (index) of the end of the labelled span for computing the token classification loss. | |
Positions are clamped to the length of the sequence (`sequence_length`). | |
Position outside of the sequence are not taken into account for computing the loss. | |
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: | |
**loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``: | |
Total span extraction loss is the sum of a Cross-Entropy for the start and end positions. | |
**start_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length,)`` | |
Span-start scores (before SoftMax). | |
**end_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length,)`` | |
Span-end scores (before SoftMax). | |
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``) | |
list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings) | |
of shape ``(batch_size, sequence_length, hidden_size)``: | |
Hidden-states of the model at the output of each layer plus the initial embedding outputs. | |
**attentions**: (`optional`, returned when ``config.output_attentions=True``) | |
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: | |
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. | |
Examples:: | |
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') | |
model = BertForQuestionAnswering.from_pretrained('bert-base-uncased') | |
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 | |
start_positions = torch.tensor([1]) | |
end_positions = torch.tensor([3]) | |
outputs = model(input_ids, start_positions=start_positions, end_positions=end_positions) | |
loss, start_scores, end_scores = outputs[:2] | |
""" | |
def __init__(self, config): | |
super(BertForQuestionAnswering, self).__init__(config) | |
self.num_labels = config.num_labels | |
self.bert = BertModel(config) | |
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) | |
self.init_weights() | |
def forward(self, input_ids, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, | |
start_positions=None, end_positions=None): | |
outputs = self.bert(input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask) | |
sequence_output = outputs[0] | |
logits = self.qa_outputs(sequence_output) | |
start_logits, end_logits = logits.split(1, dim=-1) | |
start_logits = start_logits.squeeze(-1) | |
end_logits = end_logits.squeeze(-1) | |
outputs = (start_logits, end_logits,) + outputs[2:] | |
if start_positions is not None and end_positions is not None: | |
# If we are on multi-GPU, split add a dimension | |
if len(start_positions.size()) > 1: | |
start_positions = start_positions.squeeze(-1) | |
if len(end_positions.size()) > 1: | |
end_positions = end_positions.squeeze(-1) | |
# sometimes the start/end positions are outside our model inputs, we ignore these terms | |
ignored_index = start_logits.size(1) | |
start_positions.clamp_(0, ignored_index) | |
end_positions.clamp_(0, ignored_index) | |
loss_fct = CrossEntropyLoss(ignore_index=ignored_index) | |
start_loss = loss_fct(start_logits, start_positions) | |
end_loss = loss_fct(end_logits, end_positions) | |
total_loss = (start_loss + end_loss) / 2 | |
outputs = (total_loss,) + outputs | |
return outputs # (loss), start_logits, end_logits, (hidden_states), (attentions) | |
############ | |
# XX Added # | |
############ | |
class BertForLatentConnector_XX(nn.Module): | |
def __init__(self, config, latent_size): | |
super().__init__() | |
self.config = config | |
self.embeddings = BertEmbeddings(config) | |
self.encoder = BertEncoder(config) | |
self.pooler = BertPooler(config) | |
self.linear = nn.Linear(config.hidden_size, 2 * latent_size, bias=False) | |
self.init_weights() | |
def init_weights(self): | |
""" Initialize and prunes weights if needed. """ | |
# Initialize weights | |
self.apply(self._init_weights) | |
# Prune heads if needed | |
if self.config.pruned_heads: | |
self.prune_heads(self.config.pruned_heads) | |
def _init_weights(self, module): | |
""" Initialize the weights """ | |
if isinstance(module, (nn.Linear, nn.Embedding)): | |
# Slightly different from the TF version which uses truncated_normal for initialization | |
# cf https://github.com/pytorch/pytorch/pull/5617 | |
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
elif isinstance(module, BertLayerNorm): | |
module.bias.data.zero_() | |
module.weight.data.fill_(1.0) | |
if isinstance(module, nn.Linear) and module.bias is not None: | |
module.bias.data.zero_() | |
def _resize_token_embeddings(self, new_num_tokens): | |
old_embeddings = self.embeddings.word_embeddings | |
new_embeddings = self._get_resized_embeddings(old_embeddings, new_num_tokens) | |
self.embeddings.word_embeddings = new_embeddings | |
return self.embeddings.word_embeddings | |
def _prune_heads(self, heads_to_prune): | |
""" Prunes heads of the model. | |
heads_to_prune: dict of {layer_num: list of heads to prune in this layer} | |
See base class PreTrainedModel | |
""" | |
for layer, heads in heads_to_prune.items(): | |
self.encoder.layer[layer].attention.prune_heads(heads) | |
def forward(self, input_ids, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None): | |
if attention_mask is None: | |
attention_mask = torch.ones_like(input_ids) | |
if token_type_ids is None: | |
token_type_ids = torch.zeros_like(input_ids) | |
# We create a 3D attention mask from a 2D tensor mask. | |
# Sizes are [batch_size, 1, 1, to_seq_length] | |
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] | |
# this attention mask is more simple than the triangular masking of causal attention | |
# used in OpenAI GPT, we just need to prepare the broadcast dimension here. | |
extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) | |
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for | |
# masked positions, this operation will create a tensor which is 0.0 for | |
# positions we want to attend and -10000.0 for masked positions. | |
# Since we are adding it to the raw scores before the softmax, this is | |
# effectively the same as removing these entirely. | |
extended_attention_mask = extended_attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility | |
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 | |
# Prepare head mask if needed | |
# 1.0 in head_mask indicate we keep the head | |
# attention_probs has shape bsz x n_heads x N x N | |
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] | |
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] | |
if head_mask is not None: | |
if head_mask.dim() == 1: | |
head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1) | |
head_mask = head_mask.expand(self.config.num_hidden_layers, -1, -1, -1, -1) | |
elif head_mask.dim() == 2: | |
head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1) # We can specify head_mask for each layer | |
head_mask = head_mask.to(dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility | |
else: | |
head_mask = [None] * self.config.num_hidden_layers | |
embedding_output = self.embeddings(input_ids, position_ids=position_ids, token_type_ids=token_type_ids) | |
encoder_outputs = self.encoder(embedding_output, | |
extended_attention_mask, | |
head_mask=head_mask) | |
sequence_output = encoder_outputs[0] | |
pooled_output = self.pooler(sequence_output) | |
outputs = (sequence_output, pooled_output,) + encoder_outputs[1:] # add hidden_states and attentions if they are here | |
return outputs # sequence_output, pooled_output, (hidden_states), (attentions) | |