Wonder-Griffin commited on
Commit
f58765d
·
verified ·
1 Parent(s): 7e5db36

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -22
app.py CHANGED
@@ -1,5 +1,4 @@
1
  import gradio as gr
2
-
3
  from transformers import AutoModelForCausalLM, AutoTokenizer
4
 
5
  model_path = "Wonder-Griffin/ShorseyBeerLeague"
@@ -11,13 +10,9 @@ model = AutoModelForCausalLM.from_pretrained(
11
  torch_dtype='auto'
12
  ).eval()
13
 
14
- input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt')
15
- output_ids = model.generate(input_ids.to('cuda'))
16
- respond = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True)
17
-
18
  def respond(
19
  message,
20
- history: list[tuple[str, str]],
21
  system_message,
22
  max_tokens,
23
  temperature,
@@ -33,19 +28,11 @@ def respond(
33
 
34
  messages.append({"role": "user", "content": message})
35
 
 
 
36
  respond = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True)
37
 
38
- for message in client.chat_completion(
39
- messages,
40
- max_tokens=max_tokens,
41
- stream=True,
42
- temperature=temperature,
43
- top_p=top_p,
44
- ):
45
- token = message.choices[0].delta.content
46
-
47
- respond += token
48
- yield respond
49
 
50
  """
51
  For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
@@ -64,8 +51,4 @@ demo = gr.ChatInterface(
64
  label="Top-p (nucleus sampling)",
65
  ),
66
  ],
67
- )
68
-
69
-
70
- if __name__ == "__main__":
71
- demo.launch()
 
1
  import gradio as gr
 
2
  from transformers import AutoModelForCausalLM, AutoTokenizer
3
 
4
  model_path = "Wonder-Griffin/ShorseyBeerLeague"
 
10
  torch_dtype='auto'
11
  ).eval()
12
 
 
 
 
 
13
  def respond(
14
  message,
15
+ history,
16
  system_message,
17
  max_tokens,
18
  temperature,
 
28
 
29
  messages.append({"role": "user", "content": message})
30
 
31
+ input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt')
32
+ output_ids = model.generate(input_ids.to('cuda'))
33
  respond = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True)
34
 
35
+ return respond
 
 
 
 
 
 
 
 
 
 
36
 
37
  """
38
  For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
 
51
  label="Top-p (nucleus sampling)",
52
  ),
53
  ],
54
+ )