Spaces:
Runtime error
Runtime error
File size: 1,394 Bytes
9119fdc f7fa6eb 9119fdc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 |
import streamlit as st
from transformers import PegasusForConditionalGeneration, PegasusTokenizer
st.title("Paraphrase with Pegasus")
model_name = "tuner007/pegasus_paraphrase"
torch_device = "cpu"
tokenizer = PegasusTokenizer.from_pretrained(model_name)
@st.cache(allow_output_mutation=True)
def load_model():
model = PegasusForConditionalGeneration.from_pretrained(model_name).to(torch_device)
return model
def get_response(
input_text, num_return_sequences, num_beams, max_length=60, temperature=1.5
):
model = load_model()
batch = tokenizer([input_text], truncation=True, padding="longest", max_length=max_length, return_tensors="pt").to(torch_device)
translated = model.generate(**batch, max_length=max_length, num_beams=num_beams, num_return_sequences=num_return_sequences, temperature=temperature)
tgt_text = tokenizer.batch_decode(translated, skip_special_tokens=True)
return tgt_text
num_beams = 10
num_return_sequences = st.slider("Number of paraphrases", 1, 10, 5, 1)
context = st.text_area(label="Enter a sentence to paraphrase", max_chars=384)
with st.expander("Advanced"):
temperature = st.slider("Temperature", 0.1, 5.0, 1.5, 0.1)
max_length = st.slider("Max length", 10, 100, 60, 10)
if context:
response = get_response(context, num_return_sequences, num_beams, max_length, temperature)
for paraphrase in response:
st.write(paraphrase)
|