File size: 859 Bytes
ad55483
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1fccc85
ad55483
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
import gradio as gr
import torch

from timm import create_model
from timm.data import resolve_data_config
from timm.data.transforms_factory import create_transform

IMAGENET_1K_URL = "https://storage.googleapis.com/bit_models/ilsvrc2012_wordnet_lemmas.txt"
LABELS = requests.get(IMAGENET_1K_URL).text.strip().split("\n")
model = create_model('resnet50', pretrained=True)
transform = create_transform(
    **resolve_data_config({}, model=model)
)  

model.eval()

def predict_fn(img):
  img = img.convert('RGB')
  img = transform(img).unsqueeze(0)
  with torch.no_grad():
    out = model(img)
    
  probabilities = torch.nn.functional.softmax(out[0], dim=0)
  values, indices = torch.topk(probabilities, k=3)
  return {LABELS[i]: v.item() for i, v in zip(indices, values)}
  
gr.Interface(predict_fn, gr.inputs.Image(type='pil'), outputs='label').launch()