Spaces:
Running
Running
File size: 2,564 Bytes
c0a2f04 a1d082f c0a2f04 dbcc073 c0a2f04 dbcc073 187985b dbcc073 c0a2f04 dbcc073 187985b dbcc073 07df051 dbcc073 527848d 07df051 e1ecda6 187985b e1ecda6 07df051 187985b 527848d c0a2f04 187985b c0a2f04 e1ecda6 04d19e0 c0a2f04 04d19e0 187985b c0a2f04 5229ff8 c0a2f04 187985b 527848d 187985b 527848d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
import streamlit as st
from gpt_researcher import GPTResearcher
import asyncio
import nest_asyncio
import os
# Access secrets
openai_api_key = st.secrets["OPENAI_API_KEY"]
tavily_api_key = st.secrets["TAVILY_API_KEY"]
# Apply the asyncio patch from nest_asyncio if required
nest_asyncio.apply()
# Set the document path environment variable
os.environ["DOC_PATH"] = "./local" # Path to the folder with documents
# Constants
REPORT_TYPE = "research_report"
# Define the asynchronous function to fetch the report
async def fetch_report(query, report_type):
"""
Fetch a research report based on the provided query and report type.
Research is conducted on a local document related to Google Search Algorithm Leak.
"""
try:
researcher = GPTResearcher(
query=query, report_type=report_type, report_source="local"
)
await researcher.conduct_research()
return await researcher.write_report()
except Exception as e:
return f"Error during research: {str(e)}"
# Function to run the asynchronous function in a separate thread
def run_async(coroutine):
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
return loop.run_until_complete(coroutine)
# Streamlit interface
st.title("Google Leak Reporting Tool")
# User input for the query using a text area
query = st.text_area(
"Enter your research query:",
"Extract all the information about how the ranking for internal links works.",
height=150, # Adjustable height
)
# Start the report generation process
if st.button("Generate Report"):
if not query:
st.warning("Please enter a query to generate a report.")
else:
with st.spinner("Generating report..."):
# Submit the task to the ThreadPoolExecutor
future = executor.submit(run_async, fetch_report(query, REPORT_TYPE))
# Wait for the result
report = future.result()
# Display the report or error message
if report and not report.startswith("Error"):
st.success("Report generated successfully!")
st.write(report) # Display the report in the app
# Create a download button for the report
st.download_button(
label="Download Report as Text File",
data=report,
file_name="research_report.txt",
mime="text/plain",
)
else:
st.error(report) # Show the error message if any
|