Spaces:
Running
Running
File size: 2,428 Bytes
c0a2f04 a1d082f 5654a6b bbd760a dbcc073 c0a2f04 5654a6b dbcc073 187985b dbcc073 c0a2f04 dbcc073 5654a6b bbd760a 07df051 dbcc073 f32cee6 07df051 e1ecda6 187985b bbd760a e1ecda6 07df051 527848d bbd760a c0a2f04 187985b c0a2f04 e1ecda6 04d19e0 c0a2f04 04d19e0 187985b c0a2f04 5229ff8 c0a2f04 bbd760a c0a2f04 187985b bbd760a 187985b 4750bea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
import streamlit as st
from gpt_researcher import GPTResearcher
import nest_asyncio
import asyncio
import os
# Access secrets
openai_api_key = st.secrets["OPENAI_API_KEY"]
tavily_api_key = st.secrets["TAVILY_API_KEY"]
# Apply the asyncio patch from nest_asyncio if required
nest_asyncio.apply()
# Set the document path environment variable
os.environ["DOC_PATH"] = "./local" # Path to the folder with documents
# Constants
REPORT_TYPE = "research_report"
# Define the asynchronous function to fetch the report
async def fetch_report(query: str, report_type: str) -> str:
"""
Fetch a research report based on the provided query and report type.
Research is conducted on a local document.
"""
try:
researcher = GPTResearcher(
query=query, report_type=report_type, report_source="local"
)
research_result = await researcher.conduct_research()
report = await researcher.write_report()
return report
except Exception as e:
return f"Error during research: {str(e)}"
def run_report_generation(query, report_type):
"""
Helper function to run async fetch_report function.
"""
loop = asyncio.get_event_loop()
report = loop.run_until_complete(fetch_report(query, report_type))
return report
# Streamlit interface
st.title("Google Leak Reporting Tool")
# User input for the query using a text area
query = st.text_area(
"Enter your research query:",
"Extract all the information about how the ranking for internal links works.",
height=150, # Adjustable height
)
# Start the report generation process
if st.button("Generate Report"):
if not query.strip():
st.warning("Please enter a query to generate a report.")
else:
with st.spinner("Generating report..."):
report = run_report_generation(query, REPORT_TYPE)
if "Error during research" not in report:
st.success("Report generated successfully!")
st.write(report) # Display the report in the app
# Create a download button for the report
st.download_button(
label="Download Report as Text File",
data=report,
file_name="research_report.txt",
mime="text/plain",
)
else:
st.error(report) # Show the error message if any |