File size: 2,428 Bytes
c0a2f04
a1d082f
5654a6b
bbd760a
dbcc073
c0a2f04
 
 
 
 
5654a6b
 
 
dbcc073
187985b
dbcc073
c0a2f04
dbcc073
 
5654a6b
 
bbd760a
07df051
dbcc073
f32cee6
07df051
e1ecda6
187985b
 
 
bbd760a
 
 
e1ecda6
 
07df051
527848d
bbd760a
 
 
 
 
 
 
 
 
c0a2f04
187985b
c0a2f04
e1ecda6
04d19e0
c0a2f04
04d19e0
187985b
c0a2f04
 
5229ff8
c0a2f04
bbd760a
c0a2f04
 
187985b
bbd760a
 
187985b
 
 
 
 
 
 
 
 
 
4750bea
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import streamlit as st
from gpt_researcher import GPTResearcher
import nest_asyncio
import asyncio
import os

# Access secrets
openai_api_key = st.secrets["OPENAI_API_KEY"]
tavily_api_key = st.secrets["TAVILY_API_KEY"]

# Apply the asyncio patch from nest_asyncio if required
nest_asyncio.apply()

# Set the document path environment variable
os.environ["DOC_PATH"] = "./local"  # Path to the folder with documents

# Constants
REPORT_TYPE = "research_report"


# Define the asynchronous function to fetch the report
async def fetch_report(query: str, report_type: str) -> str:
    """
    Fetch a research report based on the provided query and report type.
    Research is conducted on a local document.
    """
    try:
        researcher = GPTResearcher(
            query=query, report_type=report_type, report_source="local"
        )
        research_result = await researcher.conduct_research()
        report = await researcher.write_report()
        return report
    except Exception as e:
        return f"Error during research: {str(e)}"


def run_report_generation(query, report_type):
    """
    Helper function to run async fetch_report function.
    """
    loop = asyncio.get_event_loop()
    report = loop.run_until_complete(fetch_report(query, report_type))
    return report


# Streamlit interface
st.title("Google Leak Reporting Tool")

# User input for the query using a text area
query = st.text_area(
    "Enter your research query:",
    "Extract all the information about how the ranking for internal links works.",
    height=150,  # Adjustable height
)

# Start the report generation process
if st.button("Generate Report"):
    if not query.strip():
        st.warning("Please enter a query to generate a report.")
    else:
        with st.spinner("Generating report..."):
            report = run_report_generation(query, REPORT_TYPE)
            if "Error during research" not in report:
                st.success("Report generated successfully!")
                st.write(report)  # Display the report in the app
                # Create a download button for the report
                st.download_button(
                    label="Download Report as Text File",
                    data=report,
                    file_name="research_report.txt",
                    mime="text/plain",
                )
            else:
                st.error(report)  # Show the error message if any