Spaces:
Running
Running
import streamlit as st | |
from gpt_researcher import GPTResearcher | |
import asyncio | |
import nest_asyncio | |
# Access secrets | |
openai_api_key = st.secrets["OPENAI_API_KEY"] | |
tavily_api_key = st.secrets["TAVILY_API_KEY"] | |
# Apply the asyncio patch from nest_asyncio if required | |
nest_asyncio.apply() | |
# Constants | |
REPORT_TYPE = "research_report" # Assuming this remains constant; modify as needed | |
# Function to handle asynchronous calls | |
def run_async(coroutine): | |
loop = asyncio.get_event_loop() | |
return loop.run_until_complete(coroutine) | |
# Streamlit interface | |
st.title("GPT Research Report Generator") | |
# User inputs | |
query = st.text_input( | |
"Enter your research query:", | |
"Extract all the information about how the ranking for internal links works.", | |
) | |
report_type = st.selectbox( | |
"Select report type:", | |
options=["research_report", "summary", "detailed_analysis"], | |
index=0, | |
) | |
sources = st.text_area("Enter source URLs (one per line if multiple):") | |
# Processing the sources input into a list | |
source_urls = [url.strip() for url in sources.split("\n") if url.strip()] | |
# Button to generate report | |
if st.button("Generate Report"): | |
if not query: | |
st.warning("Please enter a query to generate a report.") | |
else: | |
with st.spinner("Generating report..."): | |
# Fetch the report asynchronously | |
fetch_report_coroutine = fetch_report( | |
query, report_type, source_urls if source_urls else None | |
) | |
report = run_async(fetch_report_coroutine) | |
st.success("Report generated successfully!") | |
st.write(report) | |