Spaces:
Running
Running
import streamlit as st | |
from gpt_researcher import GPTResearcher | |
import asyncio | |
import nest_asyncio | |
import os | |
# Access secrets | |
openai_api_key = st.secrets["OPENAI_API_KEY"] | |
tavily_api_key = st.secrets["TAVILY_API_KEY"] | |
# Apply the asyncio patch from nest_asyncio if required | |
nest_asyncio.apply() | |
# Set the document path environment variable | |
os.environ['DOC_PATH'] = './' # Path to the folder with documents | |
# Constants | |
REPORT_TYPE = "research_report" | |
DOCUMENT_FILE = 'removed_code.txt' # Name of the document file | |
# Function to handle asynchronous calls | |
def run_async(coroutine): | |
loop = asyncio.get_event_loop() | |
return loop.run_until_complete(coroutine) | |
# Define the asynchronous function to fetch the report | |
async def fetch_report(query, report_type): | |
""" | |
Fetch a research report based on the provided query and report type. | |
Research is conducted on a local document specified by DOCUMENT_FILE. | |
""" | |
researcher = GPTResearcher(query=query, report_type=report_type, report_source='local') | |
await researcher.conduct_research() | |
report = await researcher.write_report() | |
return report | |
# Streamlit interface | |
st.title("Google Leak Reporting Tool") | |
# User input for the query | |
query = st.text_input( | |
"Enter your research query:", | |
"Extract all the information about how the ranking for internal links works." | |
) | |
# Button to generate report | |
if st.button("Generate Report"): | |
if not query: | |
st.warning("Please enter a query to generate a report.") | |
else: | |
with st.spinner("Generating report..."): | |
# Fetch the report asynchronously using the local document | |
fetch_report_coroutine = fetch_report(query, REPORT_TYPE) | |
report = run_async(fetch_report_coroutine) | |
st.success("Report generated successfully!") | |
st.write(report) | |