GoogleLeak / app.py
cyberandy's picture
Update app.py
e720e43 verified
raw
history blame
3.37 kB
import streamlit as st
import openai
import asyncio
import re
# Apply the asyncio patch if required
import nest_asyncio
nest_asyncio.apply()
# OpenAI Client Initialization with API Key from Streamlit secrets
client = openai.OpenAI(api_key=st.secrets["OPENAI_API_KEY"])
# Assistant ID
ASSISTANT_ID = "asst_jNEWFnROZxSI8ZnL9WDI2yCp"
# Define the asynchronous function to interact with the OpenAI assistant
async def fetch_report(query: str) -> str:
"""
Interact with OpenAI Assistant to generate a report based on the provided query.
Clean the text by removing source annotations.
"""
try:
# Create a Thread with an initial user message
thread = client.beta.threads.create(
messages=[{"role": "user", "content": query}]
)
# Start the Assistant
run = client.beta.threads.runs.create(
thread_id=thread.id, assistant_id=ASSISTANT_ID
)
# Wait for the run to complete
while run.status != "completed":
run = client.beta.threads.runs.retrieve(thread_id=thread.id, run_id=run.id)
await asyncio.sleep(5) # Delay to prevent excessive polling
# Retrieve the Messages added by the Assistant to the Thread
thread_messages = client.beta.threads.messages.list(thread.id)
# Initialize an empty string to collect the cleaned report
report = []
for message in thread_messages.data:
if message.role == "assistant":
for content_block in message.content:
if "text" in dir(content_block) and "value" in dir(
content_block.text
):
# Remove source citations
cleaned_text = re.sub(
r"【\d+:\d+†source】", "", content_block.text.value
)
report.append(cleaned_text)
return "\n".join(report)
except Exception as e:
return f"Error during research: {str(e)}"
def run_report_generation(query):
"""
Helper function to run async fetch_report function.
"""
loop = asyncio.get_event_loop()
report = loop.run_until_complete(fetch_report(query))
return report
# Streamlit interface
st.title("Google Leak Reporting Tool")
# User input for the query using a text area
query = st.text_area(
"Enter your research query:",
"Extract all the information about how the ranking for internal links works.",
height=150, # Adjustable height
)
# Start the report generation process
if st.button("Generate Report"):
if not query.strip():
st.warning("Please enter a query to generate a report.")
else:
with st.spinner("Generating report..."):
report = run_report_generation(query)
if report:
st.success("Report generated successfully!")
st.write(report) # Display the report in the app
# Create a download button for the report
st.download_button(
label="Download Report as Text File",
data=report,
file_name="research_report.txt",
mime="text/plain",
)
else:
st.error("Failed to generate report or report is empty.")