File size: 2,623 Bytes
b644746
ebca9c8
b644746
eef03e6
 
 
b644746
 
 
 
 
 
 
 
 
 
 
 
eef03e6
b644746
 
 
 
 
 
 
 
 
 
 
 
 
eef03e6
 
b644746
 
 
6363df7
b644746
6363df7
 
 
 
 
 
 
 
c7e9131
b644746
 
7a0c125
ce5adfb
7a0c125
b644746
7a0c125
b644746
7a0c125
c7e9131
6363df7
 
 
b644746
c7e9131
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import streamlit as st
import requests, json

secret_key = st.secrets["secret_key"]

def call_api(url, keyword, wl_key, description_narrative):
    api_url = "https://wl-quality-rating.eastus2.inference.ml.azure.com/score"
    
    payload = {
        "url": url,
        "keyword": keyword,
        "wl_key": wl_key,
        "description_narrative": description_narrative
    }
    
    headers = {
        "Content-Type": "application/json",
        "User-Agent": "insomnia/8.2.0",
        "Authorization": "Bearer " + secret_key
    }

    response = requests.request("POST", api_url, json=payload, headers=headers)
    return response.json()  # assuming API responds with JSON

# User inputs
url = st.text_input("Enter the URL of the webpage:")
query = st.text_input("Enter the query the content aims at ranking for:")
narrative = st.text_area("Enter the descriptive narrative of the searcher:")
wordlift_key = st.text_input("Enter the WordLift Key:")

# Button to execute analysis
if st.button("Analyze"):
    if url and query and narrative and wordlift_key:
        response = call_api(url, query, wordlift_key, narrative)
        
        # Display JSON response
        st.json(response)

        try:
            # Check if `response["analyze"]` is a string and parse it if true
            analyze_data = response["analyze"]
            if isinstance(analyze_data, str):
                analyze_data = json.loads(analyze_data)

            # Extract M and T values
            M = analyze_data[0]["M"]
            T = analyze_data[0]["T"]
            
            # Display traffic light system
            if M == 2 and T == 2:
                st.markdown("<h4 style='text-align: center; color: green;'>🟒 Content is highly relevant and trustworthy</h4>", unsafe_allow_html=True)
            elif M == 0 and T == 2:
                st.markdown("<h4 style='text-align: center; color: orange;'>🟑 Content is irrelevant even if the webpage is trustworthy</h4>", unsafe_allow_html=True)
            elif M == 1 or T == 1:
                st.markdown("<h4 style='text-align: center; color: orange;'>🟑 Content is partly relevant/helpful</h4>", unsafe_allow_html=True)
            else:
                st.markdown("<h4 style='text-align: center; color: red;'>πŸ”΄ Content is not relevant</h4>", unsafe_allow_html=True)
            
        except (KeyError, IndexError, ValueError) as e:
            st.error(f"Error extracting analysis results: {str(e)}")
            st.error("Please check the API response format and adapt the code accordingly.")
    else:
        st.warning("Please provide all inputs!")