Spaces:
Running
Running
import gradio as gr | |
import requests | |
from bs4 import BeautifulSoup | |
import os | |
import json | |
import logging | |
import pandas as pd | |
import numpy as np # Added for mean calculation | |
import matplotlib.pyplot as plt # Added for plotting | |
from typing import Optional, List, Dict, Any | |
# ------------------------ | |
# Configuration | |
# ------------------------ | |
WORDLIFT_API_URL = "https://api.wordlift.io/content-evaluations" | |
WORDLIFT_API_KEY = os.getenv("WORDLIFT_API_KEY") # Get API key from environment variable | |
# Set up logging | |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') | |
logger = logging.getLogger(__name__) | |
# ------------------------ | |
# Custom CSS & Theme | |
# ------------------------ | |
css = """ | |
@import url('https://fonts.googleapis.com/css2?family=Open+Sans:wght@300;400;600;700&display=swap'); | |
body { | |
font-family: 'Open Sans', sans-serif !important; | |
} | |
.primary-btn { | |
background-color: #3452db !important; | |
color: white !important; | |
} | |
.primary-btn:hover { | |
background-color: #2a41af !important; | |
} | |
.gradio-container { | |
max-width: 1200px; /* Limit width for better readability */ | |
margin: auto; | |
} | |
.plot-container { | |
min-height: 400px; /* Ensure plot area is visible */ | |
} | |
""" | |
theme = gr.themes.Soft( | |
primary_hue=gr.themes.colors.Color( | |
name="blue", | |
c50="#eef1ff", | |
c100="#e0e5ff", | |
c200="#c3cbff", | |
c300="#a5b2ff", | |
c400="#8798ff", | |
c500="#6a7eff", | |
c600="#3452db", | |
c700="#2a41af", | |
c800="#1f3183", | |
c900="#152156", | |
c950="#0a102b", | |
) | |
) | |
# ------------------------ | |
# Content Fetching Logic | |
# ------------------------ | |
def fetch_content_from_url(url: str, timeout: int = 15) -> str: | |
"""Fetches main text content from a URL.""" | |
logger.info(f"Fetching content from: {url}") | |
try: | |
headers = { | |
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36' | |
} | |
# Use stream=True and then process content to handle large files efficiently, | |
# though BeautifulSoup will load it all eventually. Timeout is for connection. | |
with requests.get(url, headers=headers, timeout=timeout, stream=True) as response: | |
response.raise_for_status() # Raise an exception for bad status codes | |
# Limit the amount of data read to avoid excessive memory usage | |
max_bytes_to_read = 2 * 1024 * 1024 # 2MB limit for initial read | |
content = response.content[:max_bytes_to_read] | |
if len(response.content) > max_bytes_to_read: | |
logger.warning(f"Content for {url} is larger than {max_bytes_to_read} bytes, reading truncated content.") | |
soup = BeautifulSoup(content, 'html.parser') | |
# Attempt to find main content block | |
# Prioritize more specific semantic tags | |
main_content = soup.find('article') or soup.find('main') or soup.find(class_=lambda x: x and ('content' in x.lower() or 'article' in x.lower())) | |
if main_content: | |
# Extract text from common text-containing tags within the main block | |
text_elements = main_content.find_all(['p', 'h1', 'h2', 'h3', 'h4', 'h5', 'h6', 'li', 'blockquote', 'figcaption']) | |
text = ' '.join([elem.get_text() for elem in text_elements]) | |
else: | |
# Fallback to extracting text from body if no main block found | |
text_elements = soup.body.find_all(['p', 'h1', 'h2', 'h3', 'h4', 'h5', 'h6', 'li', 'blockquote', 'figcaption']) | |
text = ' '.join([elem.get_text() for elem in text_elements]) | |
logger.warning(f"No specific content tags (<article>, <main>, etc.) found for {url}, extracting from body.") | |
# Clean up extra whitespace | |
text = ' '.join(text.split()) | |
# Limit text length *after* extraction and cleaning | |
# Adjust based on API limits/cost. WordLift's typical text APIs handle up to ~1M chars. | |
max_text_length = 1000000 | |
if len(text) > max_text_length: | |
logger.warning(f"Extracted text for {url} is too long ({len(text)} chars), truncating to {max_text_length} chars.") | |
text = text[:max_text_length] | |
return text.strip() if text else None # Return None if text is empty after processing | |
except requests.exceptions.RequestException as e: | |
logger.error(f"Failed to fetch content from {url}: {e}") | |
return None | |
except Exception as e: | |
logger.error(f"Error processing content from {url}: {e}") | |
return None | |
# ------------------------ | |
# WordLift API Call Logic | |
# ------------------------ | |
def call_wordlift_api(text: str, keywords: Optional[List[str]] = None) -> Optional[Dict[str, Any]]: | |
"""Calls the WordLift Content Evaluation API.""" | |
if not WORDLIFT_API_KEY: | |
logger.error("WORDLIFT_API_KEY environment variable not set.") | |
return {"error": "API key not configured."} | |
if not text or not text.strip(): | |
return {"error": "No significant content to evaluate."} | |
payload = { | |
"text": text, | |
"keywords": keywords if keywords else [] | |
} | |
headers = { | |
'Authorization': f'Key {WORDLIFT_API_KEY}', | |
'Content-Type': 'application/json', | |
'Accept': 'application/json' | |
} | |
logger.info(f"Calling WordLift API with text length {len(text)} and {len(keywords or [])} keywords.") | |
try: | |
response = requests.post(WORDLIFT_API_URL, headers=headers, json=payload, timeout=90) # Increased timeout again | |
response.raise_for_status() # Raise HTTPError for bad responses (4xx or 5xx) | |
return response.json() | |
except requests.exceptions.HTTPError as e: | |
logger.error(f"WordLift API HTTP error for {e.request.url}: {e.response.status_code} - {e.response.text}") | |
try: | |
error_detail = e.response.json() | |
except json.JSONDecodeError: | |
error_detail = e.response.text | |
return {"error": f"API returned status code {e.response.status_code}", "details": error_detail} | |
except requests.exceptions.Timeout as e: | |
logger.error(f"WordLift API request timed out for {e.request.url}: {e}") | |
return {"error": f"API request timed out."} | |
except requests.exceptions.RequestException as e: | |
logger.error(f"WordLift API request error for {e.request.url}: {e}") | |
return {"error": f"API request failed: {e}"} | |
except Exception as e: | |
logger.error(f"Unexpected error during API call: {e}") | |
return {"error": f"An unexpected error occurred: {e}"} | |
# ------------------------ | |
# Plotting Logic | |
# ------------------------ | |
def plot_average_radar(average_scores: Dict[str, float], avg_overall: Optional[float]) -> Any: | |
"""Return a radar (spider) plot as a Matplotlib figure showing average scores.""" | |
if not average_scores or all(v is None for v in average_scores.values()): | |
# Return a placeholder figure if no valid data is available | |
fig, ax = plt.subplots(figsize=(6, 6)) | |
ax.text(0.5, 0.5, "No successful evaluations to plot.", horizontalalignment='center', verticalalignment='center', transform=ax.transAxes, fontsize=12) | |
ax.axis('off') # Hide axes | |
plt.title("Average Content Quality Scores", size=16, y=1.05) | |
plt.tight_layout() | |
return fig | |
categories = list(average_scores.keys()) | |
values = [average_scores[cat] for cat in categories] | |
# Ensure values are floats, replace None with 0 for plotting | |
values = [float(v) if v is not None else 0 for v in values] | |
num_vars = len(categories) | |
# Calculate angles for the radar chart | |
angles = [n / float(num_vars) * 2 * np.pi for n in range(num_vars)] | |
angles += angles[:1] # Complete the circle | |
values += values[:1] # Complete the circle for values | |
fig, ax = plt.subplots(figsize=(6, 6), subplot_kw=dict(projection='polar')) | |
line_color = '#3452DB' | |
fill_color = '#A1A7AF' | |
background_color = '#F6F6F7' | |
annotation_color = '#191919' | |
# Plot data | |
ax.plot(angles, values, 'o-', linewidth=2, color=line_color, label='Average Scores') | |
ax.fill(angles, values, alpha=0.4, color=fill_color) | |
# Set tick locations and labels | |
ax.set_xticks(angles[:-1]) | |
ax.set_xticklabels(categories, color=line_color, fontsize=10) | |
# Set y-axis limits. Max score is 100. | |
ax.set_ylim(0, 100) | |
# Draw grid lines and axes | |
ax.grid(True, alpha=0.5, color=fill_color) | |
ax.set_facecolor(background_color) | |
# Add score annotations next to points | |
for angle, value, category in zip(angles[:-1], values[:-1], categories): | |
# Adjust position slightly so text doesn't overlap the point/line | |
# Radius adjustment can be tricky; let's just add text at the point for simplicity | |
ax.text(angle, value + 5, f'{value:.1f}', color=annotation_color, | |
horizontalalignment='center', verticalalignment='bottom' if value > 50 else 'top', fontsize=9) | |
# Add title | |
overall_title = f'Average Content Quality Scores\nOverall: {avg_overall:.1f}/100' if avg_overall is not None else 'Average Content Quality Scores' | |
plt.title(overall_title, size=16, y=1.1, color=annotation_color) | |
plt.tight_layout() | |
return fig | |
# ------------------------ | |
# Main Evaluation Batch Function | |
# ------------------------ | |
def evaluate_urls_batch(url_data: pd.DataFrame): | |
""" | |
Evaluates a batch of URLs using the WordLift API. | |
Args: | |
url_data: A pandas DataFrame with columns ['URL', 'Target Keywords (comma-separated)']. | |
Returns: | |
A tuple containing: | |
- A pandas DataFrame with the summary results. | |
- A dictionary containing the full results (including errors) keyed by URL. | |
- A Matplotlib figure for the average radar chart. | |
""" | |
# Check if the DataFrame has any rows (correct way using .empty) | |
if url_data.empty: | |
logger.info("Input DataFrame is empty. Returning empty results.") | |
# Return empty summary DF, empty full results, and an empty placeholder plot | |
empty_summary_df = pd.DataFrame(columns=[ | |
'URL', 'Status', 'Overall Score', 'Content Purpose', | |
'Content Accuracy', 'Content Depth', 'Readability Score (API)', | |
'Readability Grade Level', 'SEO Score', 'Word Count', 'Error/Details' | |
]) | |
return empty_summary_df, {}, plot_average_radar(None, None) # Pass None to plotting function | |
summary_results = [] | |
full_results = {} | |
# Lists to store scores for calculating averages | |
purpose_scores = [] | |
accuracy_scores = [] | |
depth_scores = [] | |
readability_scores = [] | |
seo_scores = [] | |
overall_scores = [] | |
# Ensure columns exist, add them if not (though Dataframe component should enforce this) | |
# Using .get() with default None is safer if columns might sometimes be missing | |
urls = url_data.get('URL', pd.Series(dtype=str)) | |
keywords_col = url_data.get('Target Keywords (comma-separated)', pd.Series(dtype=str)) | |
for index, url in enumerate(urls): | |
url = url.strip() if pd.notna(url) else "" | |
keywords_str = keywords_col.iloc[index].strip() if pd.notna(keywords_col.iloc[index]) else "" | |
keywords = [kw.strip() for kw in keywords_str.split(',') if kw.strip()] | |
# Generate a unique key for full_results, especially if URL is empty or duplicate | |
result_key = url if url else f"Row_{index}" | |
# Ensure unique key in case of duplicate empty URLs, maybe use index always? | |
result_key = f"Row_{index}_{url}" if url else f"Row_{index}" | |
if not url: | |
summary_results.append(["", "Skipped", "-", "-", "-", "-", "-", "-", "-", "-", "Empty URL"]) | |
full_results[result_key] = {"status": "Skipped", "error": "Empty URL input."} | |
logger.warning(f"Skipping evaluation for row {index}: Empty URL") | |
continue # Move to next URL | |
logger.info(f"Processing URL: {url} (Row {index}) with keywords: {keywords}") | |
# 1. Fetch Content | |
content = fetch_content_from_url(url) | |
if content is None or not content.strip(): | |
status = "Failed" | |
error_msg = "Failed to fetch or extract content." | |
summary_results.append([url, status, "-", "-", "-", "-", "-", "-", "-", "-", error_msg]) | |
full_results[result_key] = {"status": status, "error": error_msg} | |
logger.error(f"Processing failed for {url} (Row {index}): {error_msg}") | |
continue # Move to next URL | |
# 2. Call WordLift API | |
api_result = call_wordlift_api(content, keywords) | |
# 3. Process API Result | |
summary_row = [url] | |
if api_result and "error" not in api_result: | |
status = "Success" | |
qs = api_result.get('quality_score', {}) | |
breakdown = qs.get('breakdown', {}) | |
content_breakdown = breakdown.get('content', {}) | |
readability_breakdown = breakdown.get('readability', {}) | |
seo_breakdown = breakdown.get('seo', {}) | |
metadata = api_result.get('metadata', {}) | |
# Append scores for average calculation (only for successful calls) | |
purpose_scores.append(content_breakdown.get('purpose')) | |
accuracy_scores.append(content_breakdown.get('accuracy')) | |
depth_scores.append(content_breakdown.get('depth')) | |
readability_scores.append(readability_breakdown.get('score')) # API's readability score (e.g. 2.5) | |
seo_scores.append(seo_breakdown.get('score')) | |
overall_scores.append(qs.get('overall')) | |
# Append data for the summary table row | |
summary_row.extend([ | |
status, | |
f'{qs.get("overall", "-"): .1f}', | |
f'{content_breakdown.get("purpose", "-"): .0f}', # Assuming integer scores | |
f'{content_breakdown.get("accuracy", "-"): .0f}', # Assuming integer scores | |
f'{content_breakdown.get("depth", "-"): .0f}', # Assuming integer scores | |
f'{readability_breakdown.get("score", "-"): .1f}', | |
f'{readability_breakdown.get("grade_level", "-"): .0f}', # Assuming integer grade | |
f'{seo_breakdown.get("score", "-"): .1f}', | |
f'{metadata.get("word_count", "-"): .0f}', # Assuming integer word count | |
None # No error | |
]) | |
full_results[result_key] = api_result # Store full API result | |
else: | |
status = "Failed" | |
error_msg = api_result.get("error", "Unknown API error.") if api_result else "API call failed." | |
details = api_result.get("details", "") if api_result else "" | |
summary_row.extend([ | |
status, | |
"-", "-", "-", "-", "-", "-", "-", "-", | |
f"{error_msg} {details}" | |
]) | |
full_results[result_key] = {"status": status, "error": error_msg, "details": details} | |
logger.error(f"API call failed for {url} (Row {index}): {error_msg} {details}") | |
summary_results.append(summary_row) | |
# Calculate Averages *after* processing all URLs | |
avg_purpose = np.nanmean(purpose_scores) if purpose_scores else None # Use nanmean to ignore None/NaN | |
avg_accuracy = np.nanmean(accuracy_scores) if accuracy_scores else None | |
avg_depth = np.nanmean(depth_scores) if depth_scores else None | |
avg_readability = np.nanmean(readability_scores) if readability_scores else None | |
avg_seo = np.nanmean(seo_scores) if seo_scores else None | |
avg_overall = np.nanmean(overall_scores) if overall_scores else None | |
# Prepare scores for the radar plot function | |
average_scores_dict = { | |
'Purpose': avg_purpose, | |
'Accuracy': avg_accuracy, | |
'Depth': avg_depth, | |
'Readability': avg_readability, | |
'SEO': avg_seo | |
} | |
# Generate the average radar plot | |
average_radar_fig = plot_average_radar(average_scores_dict, avg_overall) | |
# Create pandas DataFrame for summary output | |
summary_df = pd.DataFrame(summary_results, columns=[ | |
'URL', 'Status', 'Overall Score', 'Content Purpose', | |
'Content Accuracy', 'Content Depth', 'Readability Score (API)', | |
'Readability Grade Level', 'SEO Score', 'Word Count', 'Error/Details' | |
]) | |
# Note: Formatting is already done when creating the summary_row list above | |
# using f-strings like f'{value: .1f}' or f'{value: .0f}', and setting '-' for None. | |
# This ensures that pandas DataFrame displays formatted strings directly. | |
return summary_df, full_results, average_radar_fig # Return the plot too | |
# ------------------------ | |
# Gradio Blocks Interface Setup | |
# ------------------------ | |
with gr.Blocks(css=css, theme=theme) as demo: | |
gr.Markdown("# WordLift Multi-URL Content Evaluator") | |
gr.Markdown( | |
"Enter up to 30 URLs in the table below. " | |
"Optionally, provide comma-separated target keywords for each URL. " | |
"The app will fetch content from each URL and evaluate it using the WordLift API." | |
) | |
with gr.Row(): | |
with gr.Column(scale=1): | |
url_input_df = gr.Dataframe( | |
headers=["URL", "Target Keywords (comma-separated)"], | |
datatype=["str", "str"], | |
row_count=(1, 30), # Allow adding rows up to 30 | |
col_count=(2, "fixed"), | |
value=[ | |
["https://www.wordlift.io/blog/google-helpful-content-update-2023/", "helpful content, google update"], | |
["https://www.wordlift.io/blog/what-is-a-knowledge-graph/", "knowledge graph, semantic web"], | |
["https://www.example.com/non-existent-page", ""], # Example of a failing URL | |
["", ""] # Example of an empty row | |
], # Default examples | |
label="URLs and Keywords" | |
) | |
submit_button = gr.Button("Evaluate All URLs", elem_classes=["primary-btn"]) | |
with gr.Column(scale=1, elem_classes="plot-container"): | |
# New component for the average radar plot | |
average_radar_output = gr.Plot(label="Average Content Quality Scores Radar") | |
gr.Markdown("## Detailed Results") | |
with gr.Column(): | |
summary_output_df = gr.DataFrame( | |
label="Summary Results", | |
# Data types are all string now because we formatted them with f-strings to include '-' | |
headers=['URL', 'Status', 'Overall Score', 'Content Purpose', | |
'Content Accuracy', 'Content Depth', 'Readability Score (API)', | |
'Readability Grade Level', 'SEO Score', 'Word Count', 'Error/Details'], | |
datatype=["str"] * 11, | |
wrap=True # Wrap text in columns | |
) | |
with gr.Accordion("Full JSON Results", open=False): | |
# Changed the output type to gr.JSON | |
full_results_json = gr.JSON(label="Raw API Results per URL (or Error)") | |
submit_button.click( | |
fn=evaluate_urls_batch, | |
inputs=[url_input_df], | |
# Updated outputs to include the average radar plot | |
outputs=[summary_output_df, full_results_json, average_radar_output] | |
) | |
# Launch the app | |
if __name__ == "__main__": | |
if not WORDLIFT_API_KEY: | |
logger.error("\n----------------------------------------------------------") | |
logger.error("WORDLIFT_API_KEY environment variable is not set.") | |
logger.error("Please set it before running the script:") | |
logger.error(" export WORDLIFT_API_KEY='YOUR_API_KEY'") | |
logger.error("Or if using a .env file and python-dotenv:") | |
logger.error(" pip install python-dotenv") | |
logger.error(" # Add WORDLIFT_API_KEY=YOUR_API_KEY to a .env file") | |
logger.error(" # import dotenv; dotenv.load_dotenv()") | |
logger.error(" # in your script before getting the key.") | |
logger.error("----------------------------------------------------------\n") | |
# You might want to sys.exit(1) here if the API key is mandatory | |
logger.info("Launching Gradio app...") | |
# Consider using share=True for easy sharing, but be mindful of security/costs | |
# demo.launch(share=True) | |
demo.launch() |