File size: 18,369 Bytes
c0cf9ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f55464
c0cf9ef
6127056
 
 
 
 
 
c0cf9ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12d556f
d0b52bb
32a2f5c
 
 
d381ade
 
32a2f5c
 
8c61d2a
 
 
 
 
 
 
 
 
d381ade
c0cf9ef
8c61d2a
8f55464
8c61d2a
 
 
 
 
 
 
8f55464
8c61d2a
 
 
8f55464
8c61d2a
3f3931e
8c61d2a
73367c1
 
 
 
 
 
 
 
 
 
 
8c61d2a
 
6127056
 
 
3f3931e
6127056
8c61d2a
 
 
 
 
 
 
 
 
3f3931e
73367c1
 
 
 
 
 
 
 
 
3f3931e
8c61d2a
 
 
 
 
 
 
 
 
 
 
 
 
 
73367c1
 
 
 
 
 
 
 
 
3f3931e
8c61d2a
 
 
 
 
 
 
 
 
 
 
 
73367c1
 
 
 
 
 
 
 
 
 
 
 
3f3931e
8c61d2a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6127056
8c61d2a
 
3f3931e
6127056
3f3931e
 
8c61d2a
6127056
 
 
 
8c61d2a
6127056
3f3931e
6127056
 
 
 
8c61d2a
 
 
8f55464
8c61d2a
3f3931e
73367c1
8c61d2a
32a2f5c
 
 
 
 
c0cf9ef
32a2f5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0cf9ef
32a2f5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d381ade
32a2f5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0cf9ef
 
 
32a2f5c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
# -*- coding: utf-8 -*-
"""
Created on Tue Feb 20 2023
@author: cyberandy
"""

# ---------------------------------------------------------------------------- #
# Imports
# ---------------------------------------------------------------------------- #
from io import StringIO  # for redirect_stdout
from functools import wraps  # for caching
import contextlib  # for redirect_stdout
import tldextract
import requests
import streamlit as st
import pandas as pd
import streamlit.components.v1 as components
import json
import os
from openai import OpenAI

# Unset any proxy environment variables that might be causing issues
proxy_vars = ['HTTP_PROXY', 'HTTPS_PROXY', 'http_proxy', 'https_proxy']
for var in proxy_vars:
    if var in os.environ:
        del os.environ[var]
        
# ---------------------------------------------------------------------------- #
# App Config. & Styling
# ---------------------------------------------------------------------------- #


PAGE_CONFIG = {
    "page_title": "Structured Data Audit - a Free SEO Tool by WordLift",
    "page_icon": "img/fav-ico.png",
    "layout": "centered"
}


def local_css(file_name):
    with open(file_name) as f:
        st.markdown(f'<style>{f.read()}</style>', unsafe_allow_html=True)


st.set_page_config(**PAGE_CONFIG)

local_css("style.css")


# ---------------------------------------------------------------------------- #
# Web Application
# ---------------------------------------------------------------------------- #
# st.title("πŸ”₯ Schema Audit πŸ”₯")


# ---------------------------------------------------------------------------- #
# Sidebar
# ---------------------------------------------------------------------------- #
# st.sidebar.image("img/logo-wordlift.png", width=200)
# st.sidebar.info("Run the schema audit on any website to quickly get an overview of the available markup. \
#        Simply add the naked domain without 'www.' (eg. etsy.com or etsy.com/about) URL and click on ""ANALYZE"" to get the results.")
# st.sidebar.subheader("Configuration")

# ---------------------------------------------------------------------------- #
# Functions
# ---------------------------------------------------------------------------- #

# Set the API endpoint and the API key
API_ENDPOINT = "https://api2.woorank.com/reviews"
API_KEY = os.environ.get("woorank_api_key")
openai_api_key = os.environ.get("openai_api_key")

if not API_KEY:
    st.error("The API keys are not properly configured. Check your environment variables!")
elif not openai_api_key:
    st.error("The OpenAI API key is not properly configured. Check your environment variables!")
else:
    # Generate the report by calling the ChatGPT Turbo API and the WooRank API
    # First, let's create a simple PromptTemplate class since it's not imported
    class PromptTemplate:
        def __init__(self, template, input_variables):
            self.template = template
            self.input_variables = input_variables
        
        def format(self, **kwargs):
            return self.template.format(**kwargs)
    
    def analyze_data(_advice, _items, _topics, _issues, _technologies, openai_api_key):
        """
        Analyzes website data and generates a structured report using OpenAI's GPT model.
        
        Args:
            _advice (list): A list of strings, each string is a piece of advice
            _items (list): A list of items that are being analyzed
            _topics (list): A list of topics that the user is interested in
            _issues (list): A list of issues that the user has selected
            _technologies (list): A list of technologies that the user has selected
            openai_api_key (str): The OpenAI API key
        
        Returns:
            str: A JSON-formatted string containing the analysis report
        """
        try:
            # Create the system message for ChatGPT
            prefix_messages = [{
                "role": "system", 
                "content": '''You are an SEO expert specializing in structured data analysis. Your task is to create JSON-formatted reports about websites' structured data.
    
    Key requirements:
    1. Always format output as a valid JSON object
    2. Use the exact structure provided in the template
    3. Include HTML formatting (<i>, <b>, <u>) as specified
    4. Add relevant links to structured data (https://wordlift.io/blog/en/entity/structured-data/) and schema.org (https://wordlift.io/blog/en/entity/schema-org/) in the first section
    5. Keep responses concise but informative
    6. Ensure proper JSON escaping for quotes and special characters
    
    Remember: The output must be a single, valid JSON object that can be parsed without additional processing.'''
            }]
    
            # Initialize OpenAI client with basic configuration
            client = OpenAI(
                api_key=openai_api_key,
                base_url="https://api.openai.com/v1"
            )
            
            # Construct messages for the chat API
            messages = []
            messages.extend(prefix_messages)
    
            # Create the prompt template and run statement based on conditions
            if not _issues and len(_items) > 0:
                # Case 1: When there are NO issues but there ARE items
                template = """
                Create a JSON object based on the following data:
                1. {advice} and schema classes: {items}
                2. Entities found: {topics}
                3. Technologies: {technologies}
    
                Structure your response as a valid JSON object with this exact format:
                {{
                    "first": "Analysis of schema classes with classes marked in <i>italic</i>",
                    "second": "Description of entities marked in <b>bold</b>",
                    "third": "Description of technologies in <i>italic</i>"
                }}"""
                prompt = PromptTemplate(
                    template=template,
                    input_variables=["advice", "items", "topics", "technologies"]
                )
                run_statement = {
                    "advice": _advice,
                    "items": _items,
                    "topics": _topics,
                    "technologies": _technologies
                }
    
            elif not _items:
                # Case 2: When there are NO schema classes
                template = """
                Create a JSON object for a website with no schema classes, based on:
                1. Entities found: {topics}
                2. Technologies: {technologies}
    
                Structure your response as a valid JSON object with this exact format:
                {{
                    "first": "Notice about missing schema classes",
                    "second": "Description of entities marked in <b>bold</b>",
                    "third": "Description of technologies in <i>italic</i>"
                }}"""
                prompt = PromptTemplate(
                    template=template,
                    input_variables=["topics", "technologies"]
                )
                run_statement = {
                    "topics": _topics,
                    "technologies": _technologies
                }
    
            else:
                # Case 3: When there ARE issues
                template = """
                Create a JSON object based on the following data:
                1. {advice} and schema classes: {items}
                2. Markup issues: {issues}
                3. Entities found: {topics}
                4. Technologies: {technologies}
    
                Structure your response as a valid JSON object with this exact format:
                {{
                    "first": "Analysis of schema classes with classes marked in <i>italic</i>",
                    "second": "Description of issues marked in <u>underline</u>",
                    "third": "Description of entities marked in <b>bold</b>",
                    "fourth": "Description of technologies in <i>italic</i>"
                }}"""
                prompt = PromptTemplate(
                    template=template,
                    input_variables=["advice", "items", "topics", "issues", "technologies"]
                )
                run_statement = {
                    "advice": _advice,
                    "items": _items,
                    "topics": _topics,
                    "issues": _issues,
                    "technologies": _technologies
                }
            
            # Format the prompt and add it to messages
            user_message = prompt.format(**run_statement)
            messages.append({"role": "user", "content": user_message})
    
            # Make the API call with better error handling
            try:
                response = client.chat.completions.create(
                    model="gpt-4",
                    messages=messages,
                    temperature=0.7,
                    max_tokens=1500
                )
                if hasattr(response.choices[0].message, 'content'):
                    out = response.choices[0].message.content
                else:
                    out = "Error: No content in response"
            except Exception as e:
                error_msg = str(e)
                print(f"OpenAI API Error: {error_msg}")
                if "proxies" in error_msg:
                    out = "Error: Proxy configuration issue. Please check your environment settings."
                else:
                    out = f"Sorry, there was an error with the OpenAI API: {error_msg}"
    
            return out
        
        except Exception as e:
            error_message = f"An unexpected error occurred: {str(e)}"
            print(error_message)
            return error_message
    
    # Call WooRank API to get the data (cached)
    @st.cache_data
    def get_woorank_data(url):
        """
        It takes a URL as input, and returns a dictionary of the data from the Woorank API

        :param url: The URL of the website you want to get data for
        """
        # Extract the domain from the URL

        extracted = tldextract.extract(url)
        url = f"{extracted.domain}.{extracted.suffix}"

        # Build the API URL
        api_url = f"{API_ENDPOINT}?url={url}"

        # Set the API key in the headers
        headers = {"x-api-key": API_KEY,
                "Accept": "application/json"}

        # Call the API using HTTP GET and parse the JSON response to extract what we need
        response = requests.get(api_url, headers=headers)
        data = response.json()
        result = data.get("criteria", {}).get("schema_org", {})
        advice = result.get("advice", {})
        items = result.get("data", {}).get("counts", {})
        issues = result.get("data", {}).get("issues", {})
        topics_raw = data.get("criteria", {}).get("topics", {}).get("data", {})
        technologies_raw = data.get("criteria", {}).get(
            "technologies", {}).get("data", {}).get("technologies", {})

        # extract the unique English labels into a list
        topics = list(
            set([label for item in topics_raw for label in item['dbpediaLabelsEn']]))

        # extract the technologies that are related to seo and search-engines
        technologies = []
        for item in technologies_raw:
            if "seo" in item["categories"] or "search-engines" in item["categories"]:
                technologies.append(item["app"])

        # Return now all the items we need
        return result, advice, items, issues, topics, technologies

    # Here capture the output of the function and write it to the Streamlit app for debugging purposes
    def capture_output(func):
        """Capture output from running a function and write using streamlit."""

        @wraps(func)
        def wrapper(*args, **kwargs):
            # Redirect output to string buffers
            stdout, stderr = StringIO(), StringIO()
            try:
                with contextlib.redirect_stdout(stdout), contextlib.redirect_stderr(stderr):
                    return func(*args, **kwargs)
            except Exception as err:
                print(f"Failure while executing: {err}")
            finally:
                if _stdout := stdout.getvalue():
                    print("Execution stdout:")
                    print(_stdout)
                if _stderr := stderr.getvalue():
                    print("Execution stderr:")
                    print(_stderr)

        return wrapper

    # ---------------------------------------------------------------------------- #
    # Main Function
    # ---------------------------------------------------------------------------- #
    def main():

        # Set up the Streamlit app
        # Adding the input for the URL
        url = st.text_input("Enter a URL to analyze")

        if st.button("RUN THE STRUCTURED DATA AUDIT"):
            # Call the Woorank API
            schema_org, advice, items, issues, topics, technologies = get_woorank_data(
                url)
            if not advice:
                st.warning("Whoops, sorry, our bot didn't find any data. It might be that the URL is not accessible (a firewall is in place, for example), or the website does not have structured data.", icon="⚠️")
            else:
                msg = analyze_data(advice, items, topics, issues, technologies, openai_api_key)
            # Display the results when the button is clicked and the data is available
                if schema_org and msg:
                    st.write("##### Your Findings πŸ“ˆ")
                    try:
                        data_out = json.loads(msg)
                        # here is the first block of text with the advice
                        first_block_text = data_out['first']
                        # here is the second block of text (opportunities if there are no issues, issues if there are)
                        second_block_text = data_out['second']

                        # here we create the HTML string for the first block of text (advice)
                        htmlstr1 = f"""<div class="success">{first_block_text}</div>"""
                        st.markdown(htmlstr1, unsafe_allow_html=True)
                        # adding a disclosure message
                        st.markdown(
                            """<div class="disclosure">*These findings are based on the analysis of your website as seen from the "eyes" of a crawler.</div>""", unsafe_allow_html=True)

                        # if there are no issues, we only have three blocks of text (advice, opportunities, technologies)
                        if not issues:
                            # here we get the third block of text with the technologies
                            third_block_text = data_out['third']
                            # here we create the HTML string for the second block of text (opportunities)
                            htmlstr2 = f"""<p class="opportunity">ℹ️ <b>Opportunities</b></br>{second_block_text}</p>"""
                            st.markdown(htmlstr2, unsafe_allow_html=True)
                            # here we create the HTML string for the third block of text (technologies)
                            htmlstr3 = f"""<p class="technology">πŸ‘©πŸ½β€πŸ’» <b>Technologies</b></br>{third_block_text}</p>"""
                            st.markdown(htmlstr3, unsafe_allow_html=True)
                        # if there are issues, we have four blocks of text (advice, issues, opportunities, technologies)
                        else:
                            # here we get the third block of text with the opportunities
                            third_block_text = data_out['third']
                            # here we get the fourth block of text with the technologies
                            fourth_block_text = data_out['fourth']
                            # here we create the HTML string for the second block of text (issues)
                            htmlstr2 = f"""<p class="warning">⚠️ <b>Warnings</b></br>{second_block_text}</p>"""
                            st.markdown(htmlstr2, unsafe_allow_html=True)
                            # here we create the HTML string for the third block of text (opportunities)
                            htmlstr3 = f"""<p class="opportunity">ℹ️ <b>Opportunities</b></br>{third_block_text}</p>"""
                            st.markdown(htmlstr3, unsafe_allow_html=True)
                            # here we create the HTML string for the fourth block of text (technologies)
                            htmlstr4 = f"""<p class="technology">πŸ‘©πŸ½β€πŸ’» <b>Technologies</b></br>{fourth_block_text}</p>"""
                            st.markdown(htmlstr4, unsafe_allow_html=True)
                    except Exception as e:
                        st.warning(
                            "Sorry, something went wrong. Please try again later.", icon="⚠️")
                        # Adding debug info
                        stprint = capture_output(print)
                        stprint(e)
                        stprint(msg)

                    st.write("---")

                    # Adding an expandable section to display the full response
                    with st.expander("INSPECT THE REPORT"):
                        # st.write("#### Advice")
                        # st.markdown(advice, unsafe_allow_html=True)
                        st.write("##### Items")
                        st.write(items)
                        if not issues:
                            st.write("No issues found on the structured data")
                        else:
                            st.write("#### Issues")
                            st.write(issues)
                        st.write("##### Entities")
                        st.write(topics)
                        st.write("##### Technologies")
                        st.write(technologies)
                        st.write("##### Full response")
                        st.write(schema_org)
                # If the API call fails, display an error message
        else:
            if len(url) == 0:
                st.warning("Please enter a URL to analyze")
    if __name__ == "__main__":
        main()