File size: 5,481 Bytes
5ea9e86 a3c284e 5ea9e86 a9e6964 a3c284e a9e6964 a3c284e a9e6964 a3c284e a9e6964 a3c284e a9e6964 a3c284e a9e6964 a3c284e a9e6964 a3c284e a9e6964 eb0691b a3c284e eb0691b a9e6964 5ea9e86 a9e6964 5ea9e86 a3c284e a9e6964 a3c284e a9e6964 5ea9e86 a3c284e 180ea05 5ea9e86 180ea05 a9e6964 5ea9e86 eb0691b 5ea9e86 a3c284e eb0691b a9e6964 5ea9e86 a9e6964 a3c284e a9e6964 180ea05 a3c284e 180ea05 eb0691b 180ea05 a3c284e 5ea9e86 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
import gradio as gr
from huggingface_hub import InferenceClient
from transformers import SynthIDTextWatermarkingConfig
import json
class SynthIDApp:
def __init__(self):
self.client = None
self.watermarking_config = None
def login(self, hf_token):
"""Initialize the inference client with authentication."""
try:
# Initialize the inference client
self.client = InferenceClient(
model="google/gemma-2b",
token=hf_token
)
# Configure watermarking
WATERMARK_KEYS = [654, 400, 836, 123, 340, 443, 597, 160, 57, 789]
self.watermarking_config = SynthIDTextWatermarkingConfig(
keys=WATERMARK_KEYS,
ngram_len=5
)
# Test the connection
_ = self.client.token_count("Test")
return "Inference client initialized successfully!"
except Exception as e:
self.client = None
self.watermarking_config = None
return f"Error initializing client: {str(e)}"
def apply_watermark(self, text):
"""Apply SynthID watermark to input text using the inference endpoint."""
if not self.client:
return text, "Error: Client not initialized. Please login first."
try:
# Convert watermarking config to dict for the API call
watermark_dict = {
"keys": self.watermarking_config.keys,
"ngram_len": self.watermarking_config.ngram_len
}
# Make the API call with watermarking config
response = self.client.text_generation(
text,
max_new_tokens=100,
do_sample=True,
temperature=0.7,
top_p=0.9,
watermarking_config=watermark_dict,
return_full_text=False
)
watermarked_text = response
return watermarked_text, "Watermark applied successfully!"
except Exception as e:
return text, f"Error applying watermark: {str(e)}"
def analyze_text(self, text):
"""Analyze text characteristics."""
try:
total_words = len(text.split())
avg_word_length = sum(len(word) for word in text.split()) / total_words if total_words > 0 else 0
# Get token count if client is available
token_info = ""
if self.client:
try:
token_count = self.client.token_count(text)
token_info = f"\n- Token count: {token_count}"
except:
pass
analysis = f"""Text Analysis:
- Total words: {total_words}
- Average word length: {avg_word_length:.2f}{token_info}
Note: This is a basic analysis. The official SynthID detector is not yet available in the public transformers package."""
return analysis
except Exception as e:
return f"Error analyzing text: {str(e)}"
# Create Gradio interface
app_instance = SynthIDApp()
with gr.Blocks(title="SynthID Text Watermarking Tool") as app:
gr.Markdown("# SynthID Text Watermarking Tool")
gr.Markdown("Using Hugging Face Inference Endpoints for faster processing")
# Login section
with gr.Row():
hf_token = gr.Textbox(
label="Enter Hugging Face Token",
type="password",
placeholder="hf_..."
)
login_status = gr.Textbox(label="Login Status")
login_btn = gr.Button("Login")
login_btn.click(app_instance.login, inputs=[hf_token], outputs=[login_status])
with gr.Tab("Apply Watermark"):
with gr.Row():
input_text = gr.Textbox(
label="Input Text",
lines=5,
placeholder="Enter text to watermark..."
)
output_text = gr.Textbox(label="Watermarked Text", lines=5)
status = gr.Textbox(label="Status")
apply_btn = gr.Button("Apply Watermark")
apply_btn.click(app_instance.apply_watermark, inputs=[input_text], outputs=[output_text, status])
with gr.Tab("Analyze Text"):
with gr.Row():
analyze_input = gr.Textbox(
label="Text to Analyze",
lines=5,
placeholder="Enter text to analyze..."
)
analyze_result = gr.Textbox(label="Analysis Result", lines=5)
analyze_btn = gr.Button("Analyze Text")
analyze_btn.click(app_instance.analyze_text, inputs=[analyze_input], outputs=[analyze_result])
gr.Markdown("""
### Instructions:
1. Enter your Hugging Face token and click Login
2. Once connected, you can use the tabs to apply watermarks or analyze text
### Notes:
- This version uses Hugging Face's Inference Endpoints for faster processing
- No model download required - everything runs in the cloud
- The watermark is designed to be imperceptible to humans
- This demo only implements watermark application
- The official detector will be available in future releases
- For production use, use your own secure watermark keys
- Your token is never stored and is only used for API access
""")
# Launch the app
if __name__ == "__main__":
app.launch() |