File size: 6,436 Bytes
5ea9e86 a3c284e 5ea9e86 a9e6964 a3c284e a9e6964 f03955d a9e6964 a3c284e f03955d a3c284e a9e6964 f03955d a3c284e a9e6964 f03955d a3c284e a9e6964 a3c284e a9e6964 a3c284e f03955d a9e6964 f03955d a3c284e a9e6964 f03955d eb0691b f03955d eb0691b a9e6964 5ea9e86 a9e6964 5ea9e86 a3c284e a9e6964 a3c284e a9e6964 5ea9e86 f03955d 180ea05 f03955d 5ea9e86 eb0691b 5ea9e86 a3c284e eb0691b a9e6964 5ea9e86 a9e6964 a3c284e f03955d a9e6964 180ea05 a3c284e 180ea05 eb0691b 180ea05 a3c284e 5ea9e86 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
import gradio as gr
from huggingface_hub import InferenceClient
from transformers import SynthIDTextWatermarkingConfig
class SynthIDApp:
def __init__(self):
self.client = None
self.watermarking_config = None
self.WATERMARK_KEYS = [654, 400, 836, 123, 340, 443, 597, 160, 57, 789]
def login(self, hf_token):
"""Initialize the inference client with authentication."""
try:
# Initialize the inference client
self.client = InferenceClient(
model="google/gemma-2b",
token=hf_token
)
# Test the connection with a simple generation
_ = self.client.text_generation("Test", max_new_tokens=1)
return "Inference client initialized successfully!"
except Exception as e:
self.client = None
return f"Error initializing client: {str(e)}"
def update_watermark_config(self, ngram_len):
"""Update the watermarking configuration with new ngram_len."""
try:
self.watermarking_config = SynthIDTextWatermarkingConfig(
keys=self.WATERMARK_KEYS,
ngram_len=ngram_len
)
return f"Watermark config updated: ngram_len = {ngram_len}"
except Exception as e:
return f"Error updating config: {str(e)}"
def apply_watermark(self, text, ngram_len):
"""Apply SynthID watermark to input text using the inference endpoint."""
if not self.client:
return text, "Error: Client not initialized. Please login first."
try:
# Update watermark config with current ngram_len
self.update_watermark_config(ngram_len)
# Convert watermarking config to dict for the API call
watermark_dict = {
"keys": self.watermarking_config.keys,
"ngram_len": self.watermarking_config.ngram_len
}
# Make the API call with watermarking config
response = self.client.text_generation(
text,
max_new_tokens=100,
do_sample=True,
temperature=0.7,
top_p=0.9,
watermarking_config=watermark_dict,
return_full_text=False
)
watermarked_text = response
return watermarked_text, f"Watermark applied successfully! (ngram_len: {ngram_len})"
except Exception as e:
return text, f"Error applying watermark: {str(e)}"
def analyze_text(self, text):
"""Analyze text characteristics."""
try:
total_words = len(text.split())
avg_word_length = sum(len(word) for word in text.split()) / total_words if total_words > 0 else 0
char_count = len(text)
analysis = f"""Text Analysis:
- Total characters: {char_count}
- Total words: {total_words}
- Average word length: {avg_word_length:.2f}
Note: This is a basic analysis. The official SynthID detector is not yet available in the public transformers package."""
return analysis
except Exception as e:
return f"Error analyzing text: {str(e)}"
# Create Gradio interface
app_instance = SynthIDApp()
with gr.Blocks(title="SynthID Text Watermarking Tool") as app:
gr.Markdown("# SynthID Text Watermarking Tool")
gr.Markdown("Using Hugging Face Inference Endpoints for faster processing")
# Login section
with gr.Row():
hf_token = gr.Textbox(
label="Enter Hugging Face Token",
type="password",
placeholder="hf_..."
)
login_status = gr.Textbox(label="Login Status")
login_btn = gr.Button("Login")
login_btn.click(app_instance.login, inputs=[hf_token], outputs=[login_status])
with gr.Tab("Apply Watermark"):
with gr.Row():
with gr.Column(scale=3):
input_text = gr.Textbox(
label="Input Text",
lines=5,
placeholder="Enter text to watermark..."
)
output_text = gr.Textbox(label="Watermarked Text", lines=5)
with gr.Column(scale=1):
ngram_len = gr.Slider(
label="N-gram Length",
minimum=2,
maximum=5,
step=1,
value=5,
info="Controls watermark detectability (2-5)"
)
status = gr.Textbox(label="Status")
gr.Markdown("""
### N-gram Length Parameter:
- Higher values (4-5): More detectable watermark, but more brittle to changes
- Lower values (2-3): More robust to changes, but harder to detect
- Default (5): Maximum detectability""")
apply_btn = gr.Button("Apply Watermark")
apply_btn.click(
app_instance.apply_watermark,
inputs=[input_text, ngram_len],
outputs=[output_text, status]
)
with gr.Tab("Analyze Text"):
with gr.Row():
analyze_input = gr.Textbox(
label="Text to Analyze",
lines=5,
placeholder="Enter text to analyze..."
)
analyze_result = gr.Textbox(label="Analysis Result", lines=5)
analyze_btn = gr.Button("Analyze Text")
analyze_btn.click(app_instance.analyze_text, inputs=[analyze_input], outputs=[analyze_result])
gr.Markdown("""
### Instructions:
1. Enter your Hugging Face token and click Login
2. Once connected, you can use the tabs to apply watermarks or analyze text
3. Adjust the N-gram Length slider to control watermark characteristics
### Notes:
- This version uses Hugging Face's Inference Endpoints for faster processing
- No model download required - everything runs in the cloud
- The watermark is designed to be imperceptible to humans
- This demo only implements watermark application
- The official detector will be available in future releases
- For production use, use your own secure watermark keys
- Your token is never stored and is only used for API access
""")
# Launch the app
if __name__ == "__main__":
app.launch() |