Update app.py
Browse files
app.py
CHANGED
@@ -1,28 +1,31 @@
|
|
1 |
import gradio as gr
|
2 |
-
|
3 |
from transformers import SynthIDTextWatermarkingConfig
|
4 |
|
5 |
class SynthIDApp:
|
6 |
def __init__(self):
|
7 |
-
self.
|
|
|
8 |
self.watermarking_config = None
|
9 |
self.WATERMARK_KEYS = [654, 400, 836, 123, 340, 443, 597, 160, 57, 789]
|
10 |
|
11 |
def login(self, hf_token):
|
12 |
-
"""Initialize the
|
13 |
try:
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
|
|
|
|
|
|
18 |
)
|
|
|
19 |
|
20 |
-
|
21 |
-
_ = self.client.text_generation("Test", max_new_tokens=1)
|
22 |
-
return "Inference client initialized successfully!"
|
23 |
except Exception as e:
|
24 |
-
self.
|
25 |
-
return f"Error initializing
|
26 |
|
27 |
def update_watermark_config(self, ngram_len):
|
28 |
"""Update the watermarking configuration with new ngram_len."""
|
@@ -36,32 +39,44 @@ class SynthIDApp:
|
|
36 |
return f"Error updating config: {str(e)}"
|
37 |
|
38 |
def apply_watermark(self, text, ngram_len):
|
39 |
-
"""Apply SynthID watermark to input text using the inference
|
40 |
-
if not self.
|
41 |
-
return text, "Error:
|
42 |
|
43 |
try:
|
44 |
# Update watermark config with current ngram_len
|
45 |
self.update_watermark_config(ngram_len)
|
46 |
|
47 |
-
#
|
48 |
-
|
49 |
-
"
|
50 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
}
|
52 |
|
53 |
-
# Make the API call
|
54 |
-
response =
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
temperature=0.7,
|
59 |
-
top_p=0.9,
|
60 |
-
watermarking_config=watermark_dict,
|
61 |
-
return_full_text=False
|
62 |
)
|
|
|
63 |
|
64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
return watermarked_text, f"Watermark applied successfully! (ngram_len: {ngram_len})"
|
66 |
except Exception as e:
|
67 |
return text, f"Error applying watermark: {str(e)}"
|
@@ -89,7 +104,7 @@ app_instance = SynthIDApp()
|
|
89 |
|
90 |
with gr.Blocks(title="SynthID Text Watermarking Tool") as app:
|
91 |
gr.Markdown("# SynthID Text Watermarking Tool")
|
92 |
-
gr.Markdown("Using Hugging Face Inference
|
93 |
|
94 |
# Login section
|
95 |
with gr.Row():
|
@@ -153,7 +168,7 @@ with gr.Blocks(title="SynthID Text Watermarking Tool") as app:
|
|
153 |
3. Adjust the N-gram Length slider to control watermark characteristics
|
154 |
|
155 |
### Notes:
|
156 |
-
- This version uses Hugging Face's Inference
|
157 |
- No model download required - everything runs in the cloud
|
158 |
- The watermark is designed to be imperceptible to humans
|
159 |
- This demo only implements watermark application
|
|
|
1 |
import gradio as gr
|
2 |
+
import requests
|
3 |
from transformers import SynthIDTextWatermarkingConfig
|
4 |
|
5 |
class SynthIDApp:
|
6 |
def __init__(self):
|
7 |
+
self.api_url = "https://api-inference.huggingface.co/models/google/gemma-2b"
|
8 |
+
self.headers = None
|
9 |
self.watermarking_config = None
|
10 |
self.WATERMARK_KEYS = [654, 400, 836, 123, 340, 443, 597, 160, 57, 789]
|
11 |
|
12 |
def login(self, hf_token):
|
13 |
+
"""Initialize the API headers with authentication."""
|
14 |
try:
|
15 |
+
self.headers = {"Authorization": f"Bearer {hf_token}"}
|
16 |
+
|
17 |
+
# Test the connection with a simple query
|
18 |
+
response = requests.post(
|
19 |
+
self.api_url,
|
20 |
+
headers=self.headers,
|
21 |
+
json={"inputs": "Test", "parameters": {"max_new_tokens": 1}}
|
22 |
)
|
23 |
+
response.raise_for_status()
|
24 |
|
25 |
+
return "API connection initialized successfully!"
|
|
|
|
|
26 |
except Exception as e:
|
27 |
+
self.headers = None
|
28 |
+
return f"Error initializing API: {str(e)}"
|
29 |
|
30 |
def update_watermark_config(self, ngram_len):
|
31 |
"""Update the watermarking configuration with new ngram_len."""
|
|
|
39 |
return f"Error updating config: {str(e)}"
|
40 |
|
41 |
def apply_watermark(self, text, ngram_len):
|
42 |
+
"""Apply SynthID watermark to input text using the inference API."""
|
43 |
+
if not self.headers:
|
44 |
+
return text, "Error: API not initialized. Please login first."
|
45 |
|
46 |
try:
|
47 |
# Update watermark config with current ngram_len
|
48 |
self.update_watermark_config(ngram_len)
|
49 |
|
50 |
+
# Prepare the API request parameters
|
51 |
+
params = {
|
52 |
+
"inputs": text,
|
53 |
+
"parameters": {
|
54 |
+
"max_new_tokens": 100,
|
55 |
+
"do_sample": True,
|
56 |
+
"temperature": 0.7,
|
57 |
+
"top_p": 0.9,
|
58 |
+
"watermarking_config": {
|
59 |
+
"keys": self.watermarking_config.keys,
|
60 |
+
"ngram_len": self.watermarking_config.ngram_len
|
61 |
+
}
|
62 |
+
}
|
63 |
}
|
64 |
|
65 |
+
# Make the API call
|
66 |
+
response = requests.post(
|
67 |
+
self.api_url,
|
68 |
+
headers=self.headers,
|
69 |
+
json=params
|
|
|
|
|
|
|
|
|
70 |
)
|
71 |
+
response.raise_for_status()
|
72 |
|
73 |
+
# Extract the generated text
|
74 |
+
result = response.json()
|
75 |
+
if isinstance(result, list) and len(result) > 0:
|
76 |
+
watermarked_text = result[0].get('generated_text', text)
|
77 |
+
else:
|
78 |
+
watermarked_text = text
|
79 |
+
|
80 |
return watermarked_text, f"Watermark applied successfully! (ngram_len: {ngram_len})"
|
81 |
except Exception as e:
|
82 |
return text, f"Error applying watermark: {str(e)}"
|
|
|
104 |
|
105 |
with gr.Blocks(title="SynthID Text Watermarking Tool") as app:
|
106 |
gr.Markdown("# SynthID Text Watermarking Tool")
|
107 |
+
gr.Markdown("Using Hugging Face Inference API for faster processing")
|
108 |
|
109 |
# Login section
|
110 |
with gr.Row():
|
|
|
168 |
3. Adjust the N-gram Length slider to control watermark characteristics
|
169 |
|
170 |
### Notes:
|
171 |
+
- This version uses Hugging Face's Inference API for faster processing
|
172 |
- No model download required - everything runs in the cloud
|
173 |
- The watermark is designed to be imperceptible to humans
|
174 |
- This demo only implements watermark application
|