Update app.py
Browse files
app.py
CHANGED
@@ -49,7 +49,7 @@ pipe = pipeline(
|
|
49 |
|
50 |
|
51 |
|
52 |
-
def associate_speakers_with_timestamps(transcription_result, diarization, tolerance=0.02, min_segment_duration=0.05):
|
53 |
word_segments = transcription_result['chunks']
|
54 |
diarization_segments = list(diarization.itertracks(yield_label=True))
|
55 |
speaker_transcription = []
|
@@ -60,14 +60,18 @@ def associate_speakers_with_timestamps(transcription_result, diarization, tolera
|
|
60 |
def flush_current_segment():
|
61 |
nonlocal current_speaker, current_text
|
62 |
if current_speaker and current_text:
|
63 |
-
speaker_transcription.append(
|
|
|
|
|
|
|
|
|
|
|
64 |
current_text = []
|
65 |
|
66 |
for word in word_segments:
|
67 |
word_start, word_end = word['timestamp']
|
68 |
word_text = word['text']
|
69 |
|
70 |
-
# Trouver le segment de diarisation correspondant
|
71 |
matching_segment = None
|
72 |
for segment, _, speaker in diarization_segments:
|
73 |
if segment.start - tolerance <= word_start < segment.end + tolerance:
|
@@ -80,32 +84,77 @@ def associate_speakers_with_timestamps(transcription_result, diarization, tolera
|
|
80 |
flush_current_segment()
|
81 |
current_speaker = speaker
|
82 |
|
83 |
-
# Gérer les pauses longues
|
84 |
if word_start - last_word_end > 1.0: # Pause de plus d'une seconde
|
85 |
flush_current_segment()
|
86 |
|
87 |
current_text.append(word_text)
|
88 |
last_word_end = word_end
|
89 |
else:
|
90 |
-
# Si aucun segment ne correspond, attribuer au dernier locuteur connu
|
91 |
if current_speaker:
|
92 |
current_text.append(word_text)
|
93 |
else:
|
94 |
-
# Si c'est le premier mot sans correspondance, créer un nouveau segment
|
95 |
current_speaker = "SPEAKER_UNKNOWN"
|
96 |
current_text.append(word_text)
|
97 |
|
98 |
flush_current_segment()
|
99 |
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
|
108 |
-
return
|
|
|
|
|
|
|
109 |
|
110 |
def simplify_diarization_output(speaker_transcription):
|
111 |
simplified = []
|
|
|
49 |
|
50 |
|
51 |
|
52 |
+
def associate_speakers_with_timestamps(transcription_result, diarization, tolerance=0.02, min_segment_duration=0.05, max_words_to_merge=20):
|
53 |
word_segments = transcription_result['chunks']
|
54 |
diarization_segments = list(diarization.itertracks(yield_label=True))
|
55 |
speaker_transcription = []
|
|
|
60 |
def flush_current_segment():
|
61 |
nonlocal current_speaker, current_text
|
62 |
if current_speaker and current_text:
|
63 |
+
speaker_transcription.append({
|
64 |
+
"speaker": current_speaker,
|
65 |
+
"text": ' '.join(current_text),
|
66 |
+
"start": word_segments[len(speaker_transcription)]['timestamp'][0],
|
67 |
+
"end": word_segments[len(speaker_transcription) + len(current_text) - 1]['timestamp'][1]
|
68 |
+
})
|
69 |
current_text = []
|
70 |
|
71 |
for word in word_segments:
|
72 |
word_start, word_end = word['timestamp']
|
73 |
word_text = word['text']
|
74 |
|
|
|
75 |
matching_segment = None
|
76 |
for segment, _, speaker in diarization_segments:
|
77 |
if segment.start - tolerance <= word_start < segment.end + tolerance:
|
|
|
84 |
flush_current_segment()
|
85 |
current_speaker = speaker
|
86 |
|
|
|
87 |
if word_start - last_word_end > 1.0: # Pause de plus d'une seconde
|
88 |
flush_current_segment()
|
89 |
|
90 |
current_text.append(word_text)
|
91 |
last_word_end = word_end
|
92 |
else:
|
|
|
93 |
if current_speaker:
|
94 |
current_text.append(word_text)
|
95 |
else:
|
|
|
96 |
current_speaker = "SPEAKER_UNKNOWN"
|
97 |
current_text.append(word_text)
|
98 |
|
99 |
flush_current_segment()
|
100 |
|
101 |
+
def detect_interruptions(transcription, time_threshold=0.5):
|
102 |
+
for i in range(len(transcription) - 1):
|
103 |
+
current_end = transcription[i]['end']
|
104 |
+
next_start = transcription[i+1]['start']
|
105 |
+
if next_start - current_end < time_threshold:
|
106 |
+
transcription[i]['text'] += ' [...]'
|
107 |
+
transcription[i+1]['text'] = '[...] ' + transcription[i+1]['text']
|
108 |
+
return transcription
|
109 |
+
|
110 |
+
speaker_transcription = detect_interruptions(speaker_transcription)
|
111 |
+
|
112 |
+
def post_process_transcription(transcription, max_words):
|
113 |
+
processed = []
|
114 |
+
current_speaker = None
|
115 |
+
current_text = []
|
116 |
+
current_start = None
|
117 |
+
current_end = None
|
118 |
+
|
119 |
+
for segment in transcription:
|
120 |
+
if segment['speaker'] == current_speaker and len(' '.join(current_text + [segment['text']]).split()) <= max_words:
|
121 |
+
current_text.append(segment['text'])
|
122 |
+
current_end = segment['end']
|
123 |
+
else:
|
124 |
+
if current_speaker:
|
125 |
+
processed.append({
|
126 |
+
"speaker": current_speaker,
|
127 |
+
"text": ' '.join(current_text),
|
128 |
+
"start": current_start,
|
129 |
+
"end": current_end
|
130 |
+
})
|
131 |
+
current_speaker = segment['speaker']
|
132 |
+
current_text = [segment['text']]
|
133 |
+
current_start = segment['start']
|
134 |
+
current_end = segment['end']
|
135 |
+
|
136 |
+
if current_speaker:
|
137 |
+
processed.append({
|
138 |
+
"speaker": current_speaker,
|
139 |
+
"text": ' '.join(current_text),
|
140 |
+
"start": current_start,
|
141 |
+
"end": current_end
|
142 |
+
})
|
143 |
+
|
144 |
+
return processed
|
145 |
+
|
146 |
+
merged_transcription = post_process_transcription(speaker_transcription, max_words_to_merge)
|
147 |
+
|
148 |
+
speakers = sorted(set(segment['speaker'] for segment in merged_transcription))
|
149 |
+
metadata = {
|
150 |
+
"speaker_count": len(speakers),
|
151 |
+
"speakers": speakers
|
152 |
+
}
|
153 |
|
154 |
+
return {
|
155 |
+
"transcription": merged_transcription,
|
156 |
+
"metadata": metadata
|
157 |
+
}
|
158 |
|
159 |
def simplify_diarization_output(speaker_transcription):
|
160 |
simplified = []
|