Spaces:
Sleeping
Sleeping
File size: 23,486 Bytes
9b2107c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 |
### credit: https://github.com/dunky11/voicesmith
from typing import Callable, Dict, Tuple
import torch
import torch.nn.functional as F
from coqpit import Coqpit
from torch import nn
from TTS.tts.layers.delightful_tts.conformer import Conformer
from TTS.tts.layers.delightful_tts.encoders import (
PhonemeLevelProsodyEncoder,
UtteranceLevelProsodyEncoder,
get_mask_from_lengths,
)
from TTS.tts.layers.delightful_tts.energy_adaptor import EnergyAdaptor
from TTS.tts.layers.delightful_tts.networks import EmbeddingPadded, positional_encoding
from TTS.tts.layers.delightful_tts.phoneme_prosody_predictor import PhonemeProsodyPredictor
from TTS.tts.layers.delightful_tts.pitch_adaptor import PitchAdaptor
from TTS.tts.layers.delightful_tts.variance_predictor import VariancePredictor
from TTS.tts.layers.generic.aligner import AlignmentNetwork
from TTS.tts.utils.helpers import generate_path, maximum_path, sequence_mask
class AcousticModel(torch.nn.Module):
def __init__(
self,
args: "ModelArgs",
tokenizer: "TTSTokenizer" = None,
speaker_manager: "SpeakerManager" = None,
):
super().__init__()
self.args = args
self.tokenizer = tokenizer
self.speaker_manager = speaker_manager
self.init_multispeaker(args)
# self.set_embedding_dims()
self.length_scale = (
float(self.args.length_scale) if isinstance(self.args.length_scale, int) else self.args.length_scale
)
self.emb_dim = args.n_hidden_conformer_encoder
self.encoder = Conformer(
dim=self.args.n_hidden_conformer_encoder,
n_layers=self.args.n_layers_conformer_encoder,
n_heads=self.args.n_heads_conformer_encoder,
speaker_embedding_dim=self.embedded_speaker_dim,
p_dropout=self.args.dropout_conformer_encoder,
kernel_size_conv_mod=self.args.kernel_size_conv_mod_conformer_encoder,
lrelu_slope=self.args.lrelu_slope,
)
self.pitch_adaptor = PitchAdaptor(
n_input=self.args.n_hidden_conformer_encoder,
n_hidden=self.args.n_hidden_variance_adaptor,
n_out=1,
kernel_size=self.args.kernel_size_variance_adaptor,
emb_kernel_size=self.args.emb_kernel_size_variance_adaptor,
p_dropout=self.args.dropout_variance_adaptor,
lrelu_slope=self.args.lrelu_slope,
)
self.energy_adaptor = EnergyAdaptor(
channels_in=self.args.n_hidden_conformer_encoder,
channels_hidden=self.args.n_hidden_variance_adaptor,
channels_out=1,
kernel_size=self.args.kernel_size_variance_adaptor,
emb_kernel_size=self.args.emb_kernel_size_variance_adaptor,
dropout=self.args.dropout_variance_adaptor,
lrelu_slope=self.args.lrelu_slope,
)
self.aligner = AlignmentNetwork(
in_query_channels=self.args.out_channels,
in_key_channels=self.args.n_hidden_conformer_encoder,
)
self.duration_predictor = VariancePredictor(
channels_in=self.args.n_hidden_conformer_encoder,
channels=self.args.n_hidden_variance_adaptor,
channels_out=1,
kernel_size=self.args.kernel_size_variance_adaptor,
p_dropout=self.args.dropout_variance_adaptor,
lrelu_slope=self.args.lrelu_slope,
)
self.utterance_prosody_encoder = UtteranceLevelProsodyEncoder(
num_mels=self.args.num_mels,
ref_enc_filters=self.args.ref_enc_filters_reference_encoder,
ref_enc_size=self.args.ref_enc_size_reference_encoder,
ref_enc_gru_size=self.args.ref_enc_gru_size_reference_encoder,
ref_enc_strides=self.args.ref_enc_strides_reference_encoder,
n_hidden=self.args.n_hidden_conformer_encoder,
dropout=self.args.dropout_conformer_encoder,
bottleneck_size_u=self.args.bottleneck_size_u_reference_encoder,
token_num=self.args.token_num_reference_encoder,
)
self.utterance_prosody_predictor = PhonemeProsodyPredictor(
hidden_size=self.args.n_hidden_conformer_encoder,
kernel_size=self.args.predictor_kernel_size_reference_encoder,
dropout=self.args.dropout_conformer_encoder,
bottleneck_size=self.args.bottleneck_size_u_reference_encoder,
lrelu_slope=self.args.lrelu_slope,
)
self.phoneme_prosody_encoder = PhonemeLevelProsodyEncoder(
num_mels=self.args.num_mels,
ref_enc_filters=self.args.ref_enc_filters_reference_encoder,
ref_enc_size=self.args.ref_enc_size_reference_encoder,
ref_enc_gru_size=self.args.ref_enc_gru_size_reference_encoder,
ref_enc_strides=self.args.ref_enc_strides_reference_encoder,
n_hidden=self.args.n_hidden_conformer_encoder,
dropout=self.args.dropout_conformer_encoder,
bottleneck_size_p=self.args.bottleneck_size_p_reference_encoder,
n_heads=self.args.n_heads_conformer_encoder,
)
self.phoneme_prosody_predictor = PhonemeProsodyPredictor(
hidden_size=self.args.n_hidden_conformer_encoder,
kernel_size=self.args.predictor_kernel_size_reference_encoder,
dropout=self.args.dropout_conformer_encoder,
bottleneck_size=self.args.bottleneck_size_p_reference_encoder,
lrelu_slope=self.args.lrelu_slope,
)
self.u_bottle_out = nn.Linear(
self.args.bottleneck_size_u_reference_encoder,
self.args.n_hidden_conformer_encoder,
)
self.u_norm = nn.InstanceNorm1d(self.args.bottleneck_size_u_reference_encoder)
self.p_bottle_out = nn.Linear(
self.args.bottleneck_size_p_reference_encoder,
self.args.n_hidden_conformer_encoder,
)
self.p_norm = nn.InstanceNorm1d(
self.args.bottleneck_size_p_reference_encoder,
)
self.decoder = Conformer(
dim=self.args.n_hidden_conformer_decoder,
n_layers=self.args.n_layers_conformer_decoder,
n_heads=self.args.n_heads_conformer_decoder,
speaker_embedding_dim=self.embedded_speaker_dim,
p_dropout=self.args.dropout_conformer_decoder,
kernel_size_conv_mod=self.args.kernel_size_conv_mod_conformer_decoder,
lrelu_slope=self.args.lrelu_slope,
)
padding_idx = self.tokenizer.characters.pad_id
self.src_word_emb = EmbeddingPadded(
self.args.num_chars, self.args.n_hidden_conformer_encoder, padding_idx=padding_idx
)
self.to_mel = nn.Linear(
self.args.n_hidden_conformer_decoder,
self.args.num_mels,
)
self.energy_scaler = torch.nn.BatchNorm1d(1, affine=False, track_running_stats=True, momentum=None)
self.energy_scaler.requires_grad_(False)
def init_multispeaker(self, args: Coqpit): # pylint: disable=unused-argument
"""Init for multi-speaker training."""
self.embedded_speaker_dim = 0
self.num_speakers = self.args.num_speakers
self.audio_transform = None
if self.speaker_manager:
self.num_speakers = self.speaker_manager.num_speakers
if self.args.use_speaker_embedding:
self._init_speaker_embedding()
if self.args.use_d_vector_file:
self._init_d_vector()
@staticmethod
def _set_cond_input(aux_input: Dict):
"""Set the speaker conditioning input based on the multi-speaker mode."""
sid, g, lid, durations = None, None, None, None
if "speaker_ids" in aux_input and aux_input["speaker_ids"] is not None:
sid = aux_input["speaker_ids"]
if sid.ndim == 0:
sid = sid.unsqueeze_(0)
if "d_vectors" in aux_input and aux_input["d_vectors"] is not None:
g = F.normalize(aux_input["d_vectors"]) # .unsqueeze_(-1)
if g.ndim == 2:
g = g # .unsqueeze_(0) # pylint: disable=self-assigning-variable
if "durations" in aux_input and aux_input["durations"] is not None:
durations = aux_input["durations"]
return sid, g, lid, durations
def get_aux_input(self, aux_input: Dict):
sid, g, lid, _ = self._set_cond_input(aux_input)
return {"speaker_ids": sid, "style_wav": None, "d_vectors": g, "language_ids": lid}
def _set_speaker_input(self, aux_input: Dict):
d_vectors = aux_input.get("d_vectors", None)
speaker_ids = aux_input.get("speaker_ids", None)
if d_vectors is not None and speaker_ids is not None:
raise ValueError("[!] Cannot use d-vectors and speaker-ids together.")
if speaker_ids is not None and not hasattr(self, "emb_g"):
raise ValueError("[!] Cannot use speaker-ids without enabling speaker embedding.")
g = speaker_ids if speaker_ids is not None else d_vectors
return g
# def set_embedding_dims(self):
# if self.embedded_speaker_dim > 0:
# self.embedding_dims = self.embedded_speaker_dim
# else:
# self.embedding_dims = 0
def _init_speaker_embedding(self):
# pylint: disable=attribute-defined-outside-init
if self.num_speakers > 0:
print(" > initialization of speaker-embedding layers.")
self.embedded_speaker_dim = self.args.speaker_embedding_channels
self.emb_g = nn.Embedding(self.num_speakers, self.embedded_speaker_dim)
def _init_d_vector(self):
# pylint: disable=attribute-defined-outside-init
if hasattr(self, "emb_g"):
raise ValueError("[!] Speaker embedding layer already initialized before d_vector settings.")
self.embedded_speaker_dim = self.args.d_vector_dim
@staticmethod
def generate_attn(dr, x_mask, y_mask=None):
"""Generate an attention mask from the linear scale durations.
Args:
dr (Tensor): Linear scale durations.
x_mask (Tensor): Mask for the input (character) sequence.
y_mask (Tensor): Mask for the output (spectrogram) sequence. Compute it from the predicted durations
if None. Defaults to None.
Shapes
- dr: :math:`(B, T_{en})`
- x_mask: :math:`(B, T_{en})`
- y_mask: :math:`(B, T_{de})`
"""
# compute decode mask from the durations
if y_mask is None:
y_lengths = dr.sum(1).long()
y_lengths[y_lengths < 1] = 1
y_mask = torch.unsqueeze(sequence_mask(y_lengths, None), 1).to(dr.dtype)
attn_mask = torch.unsqueeze(x_mask, -1) * torch.unsqueeze(y_mask, 2)
attn = generate_path(dr, attn_mask.squeeze(1)).to(dr.dtype)
return attn
def _expand_encoder_with_durations(
self,
o_en: torch.FloatTensor,
dr: torch.IntTensor,
x_mask: torch.IntTensor,
y_lengths: torch.IntTensor,
):
y_mask = torch.unsqueeze(sequence_mask(y_lengths, None), 1).to(o_en.dtype)
attn = self.generate_attn(dr, x_mask, y_mask)
o_en_ex = torch.einsum("kmn, kjm -> kjn", [attn.float(), o_en])
return y_mask, o_en_ex, attn.transpose(1, 2)
def _forward_aligner(
self,
x: torch.FloatTensor,
y: torch.FloatTensor,
x_mask: torch.IntTensor,
y_mask: torch.IntTensor,
attn_priors: torch.FloatTensor,
) -> Tuple[torch.IntTensor, torch.FloatTensor, torch.FloatTensor, torch.FloatTensor]:
"""Aligner forward pass.
1. Compute a mask to apply to the attention map.
2. Run the alignment network.
3. Apply MAS to compute the hard alignment map.
4. Compute the durations from the hard alignment map.
Args:
x (torch.FloatTensor): Input sequence.
y (torch.FloatTensor): Output sequence.
x_mask (torch.IntTensor): Input sequence mask.
y_mask (torch.IntTensor): Output sequence mask.
attn_priors (torch.FloatTensor): Prior for the aligner network map.
Returns:
Tuple[torch.IntTensor, torch.FloatTensor, torch.FloatTensor, torch.FloatTensor]:
Durations from the hard alignment map, soft alignment potentials, log scale alignment potentials,
hard alignment map.
Shapes:
- x: :math:`[B, T_en, C_en]`
- y: :math:`[B, T_de, C_de]`
- x_mask: :math:`[B, 1, T_en]`
- y_mask: :math:`[B, 1, T_de]`
- attn_priors: :math:`[B, T_de, T_en]`
- aligner_durations: :math:`[B, T_en]`
- aligner_soft: :math:`[B, T_de, T_en]`
- aligner_logprob: :math:`[B, 1, T_de, T_en]`
- aligner_mas: :math:`[B, T_de, T_en]`
"""
attn_mask = torch.unsqueeze(x_mask, -1) * torch.unsqueeze(y_mask, 2) # [B, 1, T_en, T_de]
aligner_soft, aligner_logprob = self.aligner(y.transpose(1, 2), x.transpose(1, 2), x_mask, attn_priors)
aligner_mas = maximum_path(
aligner_soft.squeeze(1).transpose(1, 2).contiguous(), attn_mask.squeeze(1).contiguous()
)
aligner_durations = torch.sum(aligner_mas, -1).int()
aligner_soft = aligner_soft.squeeze(1) # [B, T_max2, T_max]
aligner_mas = aligner_mas.transpose(1, 2) # [B, T_max, T_max2] -> [B, T_max2, T_max]
return aligner_durations, aligner_soft, aligner_logprob, aligner_mas
def average_utterance_prosody( # pylint: disable=no-self-use
self, u_prosody_pred: torch.Tensor, src_mask: torch.Tensor
) -> torch.Tensor:
lengths = ((~src_mask) * 1.0).sum(1)
u_prosody_pred = u_prosody_pred.sum(1, keepdim=True) / lengths.view(-1, 1, 1)
return u_prosody_pred
def forward(
self,
tokens: torch.Tensor,
src_lens: torch.Tensor,
mels: torch.Tensor,
mel_lens: torch.Tensor,
pitches: torch.Tensor,
energies: torch.Tensor,
attn_priors: torch.Tensor,
use_ground_truth: bool = True,
d_vectors: torch.Tensor = None,
speaker_idx: torch.Tensor = None,
) -> Dict[str, torch.Tensor]:
sid, g, lid, _ = self._set_cond_input( # pylint: disable=unused-variable
{"d_vectors": d_vectors, "speaker_ids": speaker_idx}
) # pylint: disable=unused-variable
src_mask = get_mask_from_lengths(src_lens) # [B, T_src]
mel_mask = get_mask_from_lengths(mel_lens) # [B, T_mel]
# Token embeddings
token_embeddings = self.src_word_emb(tokens) # [B, T_src, C_hidden]
token_embeddings = token_embeddings.masked_fill(src_mask.unsqueeze(-1), 0.0)
# Alignment network and durations
aligner_durations, aligner_soft, aligner_logprob, aligner_mas = self._forward_aligner(
x=token_embeddings,
y=mels.transpose(1, 2),
x_mask=~src_mask[:, None],
y_mask=~mel_mask[:, None],
attn_priors=attn_priors,
)
dr = aligner_durations # [B, T_en]
# Embeddings
speaker_embedding = None
if d_vectors is not None:
speaker_embedding = g
elif speaker_idx is not None:
speaker_embedding = F.normalize(self.emb_g(sid))
pos_encoding = positional_encoding(
self.emb_dim,
max(token_embeddings.shape[1], max(mel_lens)),
device=token_embeddings.device,
)
encoder_outputs = self.encoder(
token_embeddings,
src_mask,
speaker_embedding=speaker_embedding,
encoding=pos_encoding,
)
u_prosody_ref = self.u_norm(self.utterance_prosody_encoder(mels=mels, mel_lens=mel_lens))
u_prosody_pred = self.u_norm(
self.average_utterance_prosody(
u_prosody_pred=self.utterance_prosody_predictor(x=encoder_outputs, mask=src_mask),
src_mask=src_mask,
)
)
if use_ground_truth:
encoder_outputs = encoder_outputs + self.u_bottle_out(u_prosody_ref)
else:
encoder_outputs = encoder_outputs + self.u_bottle_out(u_prosody_pred)
p_prosody_ref = self.p_norm(
self.phoneme_prosody_encoder(
x=encoder_outputs, src_mask=src_mask, mels=mels, mel_lens=mel_lens, encoding=pos_encoding
)
)
p_prosody_pred = self.p_norm(self.phoneme_prosody_predictor(x=encoder_outputs, mask=src_mask))
if use_ground_truth:
encoder_outputs = encoder_outputs + self.p_bottle_out(p_prosody_ref)
else:
encoder_outputs = encoder_outputs + self.p_bottle_out(p_prosody_pred)
encoder_outputs_res = encoder_outputs
pitch_pred, avg_pitch_target, pitch_emb = self.pitch_adaptor.get_pitch_embedding_train(
x=encoder_outputs,
target=pitches,
dr=dr,
mask=src_mask,
)
energy_pred, avg_energy_target, energy_emb = self.energy_adaptor.get_energy_embedding_train(
x=encoder_outputs,
target=energies,
dr=dr,
mask=src_mask,
)
encoder_outputs = encoder_outputs.transpose(1, 2) + pitch_emb + energy_emb
log_duration_prediction = self.duration_predictor(x=encoder_outputs_res.detach(), mask=src_mask)
mel_pred_mask, encoder_outputs_ex, alignments = self._expand_encoder_with_durations(
o_en=encoder_outputs, y_lengths=mel_lens, dr=dr, x_mask=~src_mask[:, None]
)
x = self.decoder(
encoder_outputs_ex.transpose(1, 2),
mel_mask,
speaker_embedding=speaker_embedding,
encoding=pos_encoding,
)
x = self.to_mel(x)
dr = torch.log(dr + 1)
dr_pred = torch.exp(log_duration_prediction) - 1
alignments_dp = self.generate_attn(dr_pred, src_mask.unsqueeze(1), mel_pred_mask) # [B, T_max, T_max2']
return {
"model_outputs": x,
"pitch_pred": pitch_pred,
"pitch_target": avg_pitch_target,
"energy_pred": energy_pred,
"energy_target": avg_energy_target,
"u_prosody_pred": u_prosody_pred,
"u_prosody_ref": u_prosody_ref,
"p_prosody_pred": p_prosody_pred,
"p_prosody_ref": p_prosody_ref,
"alignments_dp": alignments_dp,
"alignments": alignments, # [B, T_de, T_en]
"aligner_soft": aligner_soft,
"aligner_mas": aligner_mas,
"aligner_durations": aligner_durations,
"aligner_logprob": aligner_logprob,
"dr_log_pred": log_duration_prediction.squeeze(1), # [B, T]
"dr_log_target": dr.squeeze(1), # [B, T]
"spk_emb": speaker_embedding,
}
@torch.no_grad()
def inference(
self,
tokens: torch.Tensor,
speaker_idx: torch.Tensor,
p_control: float = None, # TODO # pylint: disable=unused-argument
d_control: float = None, # TODO # pylint: disable=unused-argument
d_vectors: torch.Tensor = None,
pitch_transform: Callable = None,
energy_transform: Callable = None,
) -> torch.Tensor:
src_mask = get_mask_from_lengths(torch.tensor([tokens.shape[1]], dtype=torch.int64, device=tokens.device))
src_lens = torch.tensor(tokens.shape[1:2]).to(tokens.device) # pylint: disable=unused-variable
sid, g, lid, _ = self._set_cond_input( # pylint: disable=unused-variable
{"d_vectors": d_vectors, "speaker_ids": speaker_idx}
) # pylint: disable=unused-variable
token_embeddings = self.src_word_emb(tokens)
token_embeddings = token_embeddings.masked_fill(src_mask.unsqueeze(-1), 0.0)
# Embeddings
speaker_embedding = None
if d_vectors is not None:
speaker_embedding = g
elif speaker_idx is not None:
speaker_embedding = F.normalize(self.emb_g(sid))
pos_encoding = positional_encoding(
self.emb_dim,
token_embeddings.shape[1],
device=token_embeddings.device,
)
encoder_outputs = self.encoder(
token_embeddings,
src_mask,
speaker_embedding=speaker_embedding,
encoding=pos_encoding,
)
u_prosody_pred = self.u_norm(
self.average_utterance_prosody(
u_prosody_pred=self.utterance_prosody_predictor(x=encoder_outputs, mask=src_mask),
src_mask=src_mask,
)
)
encoder_outputs = encoder_outputs + self.u_bottle_out(u_prosody_pred).expand_as(encoder_outputs)
p_prosody_pred = self.p_norm(
self.phoneme_prosody_predictor(
x=encoder_outputs,
mask=src_mask,
)
)
encoder_outputs = encoder_outputs + self.p_bottle_out(p_prosody_pred).expand_as(encoder_outputs)
encoder_outputs_res = encoder_outputs
pitch_emb_pred, pitch_pred = self.pitch_adaptor.get_pitch_embedding(
x=encoder_outputs,
mask=src_mask,
pitch_transform=pitch_transform,
pitch_mean=self.pitch_mean if hasattr(self, "pitch_mean") else None,
pitch_std=self.pitch_std if hasattr(self, "pitch_std") else None,
)
energy_emb_pred, energy_pred = self.energy_adaptor.get_energy_embedding(
x=encoder_outputs, mask=src_mask, energy_transform=energy_transform
)
encoder_outputs = encoder_outputs.transpose(1, 2) + pitch_emb_pred + energy_emb_pred
log_duration_pred = self.duration_predictor(
x=encoder_outputs_res.detach(), mask=src_mask
) # [B, C_hidden, T_src] -> [B, T_src]
duration_pred = (torch.exp(log_duration_pred) - 1) * (~src_mask) * self.length_scale # -> [B, T_src]
duration_pred[duration_pred < 1] = 1.0 # -> [B, T_src]
duration_pred = torch.round(duration_pred) # -> [B, T_src]
mel_lens = duration_pred.sum(1) # -> [B,]
_, encoder_outputs_ex, alignments = self._expand_encoder_with_durations(
o_en=encoder_outputs, y_lengths=mel_lens, dr=duration_pred.squeeze(1), x_mask=~src_mask[:, None]
)
mel_mask = get_mask_from_lengths(
torch.tensor([encoder_outputs_ex.shape[2]], dtype=torch.int64, device=encoder_outputs_ex.device)
)
if encoder_outputs_ex.shape[1] > pos_encoding.shape[1]:
encoding = positional_encoding(self.emb_dim, encoder_outputs_ex.shape[2], device=tokens.device)
# [B, C_hidden, T_src], [B, 1, T_src], [B, C_emb], [B, T_src, C_hidden] -> [B, C_hidden, T_src]
x = self.decoder(
encoder_outputs_ex.transpose(1, 2),
mel_mask,
speaker_embedding=speaker_embedding,
encoding=encoding,
)
x = self.to_mel(x)
outputs = {
"model_outputs": x,
"alignments": alignments,
# "pitch": pitch_emb_pred,
"durations": duration_pred,
"pitch": pitch_pred,
"energy": energy_pred,
"spk_emb": speaker_embedding,
}
return outputs
|