Spaces:
Sleeping
Sleeping
File size: 3,245 Bytes
9b2107c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
from typing import Callable, Tuple
import torch
import torch.nn as nn # pylint: disable=consider-using-from-import
from TTS.tts.layers.delightful_tts.variance_predictor import VariancePredictor
from TTS.tts.utils.helpers import average_over_durations
class EnergyAdaptor(nn.Module): # pylint: disable=abstract-method
"""Variance Adaptor with an added 1D conv layer. Used to
get energy embeddings.
Args:
channels_in (int): Number of in channels for conv layers.
channels_out (int): Number of out channels.
kernel_size (int): Size the kernel for the conv layers.
dropout (float): Probability of dropout.
lrelu_slope (float): Slope for the leaky relu.
emb_kernel_size (int): Size the kernel for the pitch embedding.
Inputs: inputs, mask
- **inputs** (batch, time1, dim): Tensor containing input vector
- **target** (batch, 1, time2): Tensor containing the energy target
- **dr** (batch, time1): Tensor containing aligner durations vector
- **mask** (batch, time1): Tensor containing indices to be masked
Returns:
- **energy prediction** (batch, 1, time1): Tensor produced by energy predictor
- **energy embedding** (batch, channels, time1): Tensor produced energy adaptor
- **average energy target(train only)** (batch, 1, time1): Tensor produced after averaging over durations
"""
def __init__(
self,
channels_in: int,
channels_hidden: int,
channels_out: int,
kernel_size: int,
dropout: float,
lrelu_slope: float,
emb_kernel_size: int,
):
super().__init__()
self.energy_predictor = VariancePredictor(
channels_in=channels_in,
channels=channels_hidden,
channels_out=channels_out,
kernel_size=kernel_size,
p_dropout=dropout,
lrelu_slope=lrelu_slope,
)
self.energy_emb = nn.Conv1d(
1,
channels_hidden,
kernel_size=emb_kernel_size,
padding=int((emb_kernel_size - 1) / 2),
)
def get_energy_embedding_train(
self, x: torch.Tensor, target: torch.Tensor, dr: torch.IntTensor, mask: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Shapes:
x: :math: `[B, T_src, C]`
target: :math: `[B, 1, T_max2]`
dr: :math: `[B, T_src]`
mask: :math: `[B, T_src]`
"""
energy_pred = self.energy_predictor(x, mask)
energy_pred.unsqueeze_(1)
avg_energy_target = average_over_durations(target, dr)
energy_emb = self.energy_emb(avg_energy_target)
return energy_pred, avg_energy_target, energy_emb
def get_energy_embedding(self, x: torch.Tensor, mask: torch.Tensor, energy_transform: Callable) -> torch.Tensor:
energy_pred = self.energy_predictor(x, mask)
energy_pred.unsqueeze_(1)
if energy_transform is not None:
energy_pred = energy_transform(energy_pred, (~mask).sum(dim=(1, 2)), self.pitch_mean, self.pitch_std)
energy_emb_pred = self.energy_emb(energy_pred)
return energy_emb_pred, energy_pred
|