Spaces:
Sleeping
Sleeping
File size: 3,249 Bytes
9b2107c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 |
import torch
from torch import nn
from torch.nn.modules.conv import Conv1d
from TTS.vocoder.models.hifigan_discriminator import DiscriminatorP, MultiPeriodDiscriminator
class DiscriminatorS(torch.nn.Module):
"""HiFiGAN Scale Discriminator. Channel sizes are different from the original HiFiGAN.
Args:
use_spectral_norm (bool): if `True` swith to spectral norm instead of weight norm.
"""
def __init__(self, use_spectral_norm=False):
super().__init__()
norm_f = nn.utils.spectral_norm if use_spectral_norm else nn.utils.parametrizations.weight_norm
self.convs = nn.ModuleList(
[
norm_f(Conv1d(1, 16, 15, 1, padding=7)),
norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
]
)
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
def forward(self, x):
"""
Args:
x (Tensor): input waveform.
Returns:
Tensor: discriminator scores.
List[Tensor]: list of features from the convolutiona layers.
"""
feat = []
for l in self.convs:
x = l(x)
x = torch.nn.functional.leaky_relu(x, 0.1)
feat.append(x)
x = self.conv_post(x)
feat.append(x)
x = torch.flatten(x, 1, -1)
return x, feat
class VitsDiscriminator(nn.Module):
"""VITS discriminator wrapping one Scale Discriminator and a stack of Period Discriminator.
::
waveform -> ScaleDiscriminator() -> scores_sd, feats_sd --> append() -> scores, feats
|--> MultiPeriodDiscriminator() -> scores_mpd, feats_mpd ^
Args:
use_spectral_norm (bool): if `True` swith to spectral norm instead of weight norm.
"""
def __init__(self, periods=(2, 3, 5, 7, 11), use_spectral_norm=False):
super().__init__()
self.nets = nn.ModuleList()
self.nets.append(DiscriminatorS(use_spectral_norm=use_spectral_norm))
self.nets.extend([DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods])
def forward(self, x, x_hat=None):
"""
Args:
x (Tensor): ground truth waveform.
x_hat (Tensor): predicted waveform.
Returns:
List[Tensor]: discriminator scores.
List[List[Tensor]]: list of list of features from each layers of each discriminator.
"""
x_scores = []
x_hat_scores = [] if x_hat is not None else None
x_feats = []
x_hat_feats = [] if x_hat is not None else None
for net in self.nets:
x_score, x_feat = net(x)
x_scores.append(x_score)
x_feats.append(x_feat)
if x_hat is not None:
x_hat_score, x_hat_feat = net(x_hat)
x_hat_scores.append(x_hat_score)
x_hat_feats.append(x_hat_feat)
return x_scores, x_feats, x_hat_scores, x_hat_feats
|