Spaces:
Sleeping
Sleeping
File size: 12,888 Bytes
9b2107c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 |
import json
import random
from typing import Any, Dict, List, Tuple, Union
import fsspec
import numpy as np
import torch
from TTS.config import load_config
from TTS.encoder.utils.generic_utils import setup_encoder_model
from TTS.utils.audio import AudioProcessor
def load_file(path: str):
if path.endswith(".json"):
with fsspec.open(path, "r") as f:
return json.load(f)
elif path.endswith(".pth"):
with fsspec.open(path, "rb") as f:
return torch.load(f, map_location="cpu")
else:
raise ValueError("Unsupported file type")
def save_file(obj: Any, path: str):
if path.endswith(".json"):
with fsspec.open(path, "w") as f:
json.dump(obj, f, indent=4)
elif path.endswith(".pth"):
with fsspec.open(path, "wb") as f:
torch.save(obj, f)
else:
raise ValueError("Unsupported file type")
class BaseIDManager:
"""Base `ID` Manager class. Every new `ID` manager must inherit this.
It defines common `ID` manager specific functions.
"""
def __init__(self, id_file_path: str = ""):
self.name_to_id = {}
if id_file_path:
self.load_ids_from_file(id_file_path)
@staticmethod
def _load_json(json_file_path: str) -> Dict:
with fsspec.open(json_file_path, "r") as f:
return json.load(f)
@staticmethod
def _save_json(json_file_path: str, data: dict) -> None:
with fsspec.open(json_file_path, "w") as f:
json.dump(data, f, indent=4)
def set_ids_from_data(self, items: List, parse_key: str) -> None:
"""Set IDs from data samples.
Args:
items (List): Data sampled returned by `load_tts_samples()`.
"""
self.name_to_id = self.parse_ids_from_data(items, parse_key=parse_key)
def load_ids_from_file(self, file_path: str) -> None:
"""Set IDs from a file.
Args:
file_path (str): Path to the file.
"""
self.name_to_id = load_file(file_path)
def save_ids_to_file(self, file_path: str) -> None:
"""Save IDs to a json file.
Args:
file_path (str): Path to the output file.
"""
save_file(self.name_to_id, file_path)
def get_random_id(self) -> Any:
"""Get a random embedding.
Args:
Returns:
np.ndarray: embedding.
"""
if self.name_to_id:
return self.name_to_id[random.choices(list(self.name_to_id.keys()))[0]]
return None
@staticmethod
def parse_ids_from_data(items: List, parse_key: str) -> Tuple[Dict]:
"""Parse IDs from data samples retured by `load_tts_samples()`.
Args:
items (list): Data sampled returned by `load_tts_samples()`.
parse_key (str): The key to being used to parse the data.
Returns:
Tuple[Dict]: speaker IDs.
"""
classes = sorted({item[parse_key] for item in items})
ids = {name: i for i, name in enumerate(classes)}
return ids
class EmbeddingManager(BaseIDManager):
"""Base `Embedding` Manager class. Every new `Embedding` manager must inherit this.
It defines common `Embedding` manager specific functions.
It expects embeddings files in the following format:
::
{
'audio_file_key':{
'name': 'category_name',
'embedding'[<embedding_values>]
},
...
}
`audio_file_key` is a unique key to the audio file in the dataset. It can be the path to the file or any other unique key.
`embedding` is the embedding vector of the audio file.
`name` can be name of the speaker of the audio file.
"""
def __init__(
self,
embedding_file_path: Union[str, List[str]] = "",
id_file_path: str = "",
encoder_model_path: str = "",
encoder_config_path: str = "",
use_cuda: bool = False,
):
super().__init__(id_file_path=id_file_path)
self.embeddings = {}
self.embeddings_by_names = {}
self.clip_ids = []
self.encoder = None
self.encoder_ap = None
self.use_cuda = use_cuda
if embedding_file_path:
if isinstance(embedding_file_path, list):
self.load_embeddings_from_list_of_files(embedding_file_path)
else:
self.load_embeddings_from_file(embedding_file_path)
if encoder_model_path and encoder_config_path:
self.init_encoder(encoder_model_path, encoder_config_path, use_cuda)
@property
def num_embeddings(self):
"""Get number of embeddings."""
return len(self.embeddings)
@property
def num_names(self):
"""Get number of embeddings."""
return len(self.embeddings_by_names)
@property
def embedding_dim(self):
"""Dimensionality of embeddings. If embeddings are not loaded, returns zero."""
if self.embeddings:
return len(self.embeddings[list(self.embeddings.keys())[0]]["embedding"])
return 0
@property
def embedding_names(self):
"""Get embedding names."""
return list(self.embeddings_by_names.keys())
def save_embeddings_to_file(self, file_path: str) -> None:
"""Save embeddings to a json file.
Args:
file_path (str): Path to the output file.
"""
save_file(self.embeddings, file_path)
@staticmethod
def read_embeddings_from_file(file_path: str):
"""Load embeddings from a json file.
Args:
file_path (str): Path to the file.
"""
embeddings = load_file(file_path)
speakers = sorted({x["name"] for x in embeddings.values()})
name_to_id = {name: i for i, name in enumerate(speakers)}
clip_ids = list(set(sorted(clip_name for clip_name in embeddings.keys())))
# cache embeddings_by_names for fast inference using a bigger speakers.json
embeddings_by_names = {}
for x in embeddings.values():
if x["name"] not in embeddings_by_names.keys():
embeddings_by_names[x["name"]] = [x["embedding"]]
else:
embeddings_by_names[x["name"]].append(x["embedding"])
return name_to_id, clip_ids, embeddings, embeddings_by_names
def load_embeddings_from_file(self, file_path: str) -> None:
"""Load embeddings from a json file.
Args:
file_path (str): Path to the target json file.
"""
self.name_to_id, self.clip_ids, self.embeddings, self.embeddings_by_names = self.read_embeddings_from_file(
file_path
)
def load_embeddings_from_list_of_files(self, file_paths: List[str]) -> None:
"""Load embeddings from a list of json files and don't allow duplicate keys.
Args:
file_paths (List[str]): List of paths to the target json files.
"""
self.name_to_id = {}
self.clip_ids = []
self.embeddings_by_names = {}
self.embeddings = {}
for file_path in file_paths:
ids, clip_ids, embeddings, embeddings_by_names = self.read_embeddings_from_file(file_path)
# check colliding keys
duplicates = set(self.embeddings.keys()) & set(embeddings.keys())
if duplicates:
raise ValueError(f" [!] Duplicate embedding names <{duplicates}> in {file_path}")
# store values
self.name_to_id.update(ids)
self.clip_ids.extend(clip_ids)
self.embeddings_by_names.update(embeddings_by_names)
self.embeddings.update(embeddings)
# reset name_to_id to get the right speaker ids
self.name_to_id = {name: i for i, name in enumerate(self.name_to_id)}
def get_embedding_by_clip(self, clip_idx: str) -> List:
"""Get embedding by clip ID.
Args:
clip_idx (str): Target clip ID.
Returns:
List: embedding as a list.
"""
return self.embeddings[clip_idx]["embedding"]
def get_embeddings_by_name(self, idx: str) -> List[List]:
"""Get all embeddings of a speaker.
Args:
idx (str): Target name.
Returns:
List[List]: all the embeddings of the given speaker.
"""
return self.embeddings_by_names[idx]
def get_embeddings_by_names(self) -> Dict:
"""Get all embeddings by names.
Returns:
Dict: all the embeddings of each speaker.
"""
embeddings_by_names = {}
for x in self.embeddings.values():
if x["name"] not in embeddings_by_names.keys():
embeddings_by_names[x["name"]] = [x["embedding"]]
else:
embeddings_by_names[x["name"]].append(x["embedding"])
return embeddings_by_names
def get_mean_embedding(self, idx: str, num_samples: int = None, randomize: bool = False) -> np.ndarray:
"""Get mean embedding of a idx.
Args:
idx (str): Target name.
num_samples (int, optional): Number of samples to be averaged. Defaults to None.
randomize (bool, optional): Pick random `num_samples` of embeddings. Defaults to False.
Returns:
np.ndarray: Mean embedding.
"""
embeddings = self.get_embeddings_by_name(idx)
if num_samples is None:
embeddings = np.stack(embeddings).mean(0)
else:
assert len(embeddings) >= num_samples, f" [!] {idx} has number of samples < {num_samples}"
if randomize:
embeddings = np.stack(random.choices(embeddings, k=num_samples)).mean(0)
else:
embeddings = np.stack(embeddings[:num_samples]).mean(0)
return embeddings
def get_random_embedding(self) -> Any:
"""Get a random embedding.
Args:
Returns:
np.ndarray: embedding.
"""
if self.embeddings:
return self.embeddings[random.choices(list(self.embeddings.keys()))[0]]["embedding"]
return None
def get_clips(self) -> List:
return sorted(self.embeddings.keys())
def init_encoder(self, model_path: str, config_path: str, use_cuda=False) -> None:
"""Initialize a speaker encoder model.
Args:
model_path (str): Model file path.
config_path (str): Model config file path.
use_cuda (bool, optional): Use CUDA. Defaults to False.
"""
self.use_cuda = use_cuda
self.encoder_config = load_config(config_path)
self.encoder = setup_encoder_model(self.encoder_config)
self.encoder_criterion = self.encoder.load_checkpoint(
self.encoder_config, model_path, eval=True, use_cuda=use_cuda, cache=True
)
self.encoder_ap = AudioProcessor(**self.encoder_config.audio)
def compute_embedding_from_clip(self, wav_file: Union[str, List[str]]) -> list:
"""Compute a embedding from a given audio file.
Args:
wav_file (Union[str, List[str]]): Target file path.
Returns:
list: Computed embedding.
"""
def _compute(wav_file: str):
waveform = self.encoder_ap.load_wav(wav_file, sr=self.encoder_ap.sample_rate)
if not self.encoder_config.model_params.get("use_torch_spec", False):
m_input = self.encoder_ap.melspectrogram(waveform)
m_input = torch.from_numpy(m_input)
else:
m_input = torch.from_numpy(waveform)
if self.use_cuda:
m_input = m_input.cuda()
m_input = m_input.unsqueeze(0)
embedding = self.encoder.compute_embedding(m_input)
return embedding
if isinstance(wav_file, list):
# compute the mean embedding
embeddings = None
for wf in wav_file:
embedding = _compute(wf)
if embeddings is None:
embeddings = embedding
else:
embeddings += embedding
return (embeddings / len(wav_file))[0].tolist()
embedding = _compute(wav_file)
return embedding[0].tolist()
def compute_embeddings(self, feats: Union[torch.Tensor, np.ndarray]) -> List:
"""Compute embedding from features.
Args:
feats (Union[torch.Tensor, np.ndarray]): Input features.
Returns:
List: computed embedding.
"""
if isinstance(feats, np.ndarray):
feats = torch.from_numpy(feats)
if feats.ndim == 2:
feats = feats.unsqueeze(0)
if self.use_cuda:
feats = feats.cuda()
return self.encoder.compute_embedding(feats)
|