Spaces:
Sleeping
Sleeping
File size: 21,967 Bytes
9b2107c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 |
from typing import Dict, List, Optional, Tuple, Union
import librosa
import numpy as np
import torch
from coqpit import Coqpit
from torch import nn
from torch.nn import Conv1d, Conv2d, ConvTranspose1d
from torch.nn import functional as F
from torch.nn.utils import spectral_norm
from torch.nn.utils.parametrizations import weight_norm
from torch.nn.utils.parametrize import remove_parametrizations
import TTS.vc.modules.freevc.commons as commons
import TTS.vc.modules.freevc.modules as modules
from TTS.tts.utils.speakers import SpeakerManager
from TTS.utils.io import load_fsspec
from TTS.vc.configs.freevc_config import FreeVCConfig
from TTS.vc.models.base_vc import BaseVC
from TTS.vc.modules.freevc.commons import get_padding, init_weights
from TTS.vc.modules.freevc.mel_processing import mel_spectrogram_torch
from TTS.vc.modules.freevc.speaker_encoder.speaker_encoder import SpeakerEncoder as SpeakerEncoderEx
from TTS.vc.modules.freevc.wavlm import get_wavlm
class ResidualCouplingBlock(nn.Module):
def __init__(self, channels, hidden_channels, kernel_size, dilation_rate, n_layers, n_flows=4, gin_channels=0):
super().__init__()
self.channels = channels
self.hidden_channels = hidden_channels
self.kernel_size = kernel_size
self.dilation_rate = dilation_rate
self.n_layers = n_layers
self.n_flows = n_flows
self.gin_channels = gin_channels
self.flows = nn.ModuleList()
for i in range(n_flows):
self.flows.append(
modules.ResidualCouplingLayer(
channels,
hidden_channels,
kernel_size,
dilation_rate,
n_layers,
gin_channels=gin_channels,
mean_only=True,
)
)
self.flows.append(modules.Flip())
def forward(self, x, x_mask, g=None, reverse=False):
if not reverse:
for flow in self.flows:
x, _ = flow(x, x_mask, g=g, reverse=reverse)
else:
for flow in reversed(self.flows):
x = flow(x, x_mask, g=g, reverse=reverse)
return x
class Encoder(nn.Module):
def __init__(
self, in_channels, out_channels, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0
):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.hidden_channels = hidden_channels
self.kernel_size = kernel_size
self.dilation_rate = dilation_rate
self.n_layers = n_layers
self.gin_channels = gin_channels
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
self.enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels)
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
def forward(self, x, x_lengths, g=None):
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
x = self.pre(x) * x_mask
x = self.enc(x, x_mask, g=g)
stats = self.proj(x) * x_mask
m, logs = torch.split(stats, self.out_channels, dim=1)
z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
return z, m, logs, x_mask
class Generator(torch.nn.Module):
def __init__(
self,
initial_channel,
resblock,
resblock_kernel_sizes,
resblock_dilation_sizes,
upsample_rates,
upsample_initial_channel,
upsample_kernel_sizes,
gin_channels=0,
):
super(Generator, self).__init__()
self.num_kernels = len(resblock_kernel_sizes)
self.num_upsamples = len(upsample_rates)
self.conv_pre = Conv1d(initial_channel, upsample_initial_channel, 7, 1, padding=3)
resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
self.ups = nn.ModuleList()
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
self.ups.append(
weight_norm(
ConvTranspose1d(
upsample_initial_channel // (2**i),
upsample_initial_channel // (2 ** (i + 1)),
k,
u,
padding=(k - u) // 2,
)
)
)
self.resblocks = nn.ModuleList()
for i in range(len(self.ups)):
ch = upsample_initial_channel // (2 ** (i + 1))
for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
self.resblocks.append(resblock(ch, k, d))
self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
self.ups.apply(init_weights)
if gin_channels != 0:
self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
def forward(self, x, g=None):
x = self.conv_pre(x)
if g is not None:
x = x + self.cond(g)
for i in range(self.num_upsamples):
x = F.leaky_relu(x, modules.LRELU_SLOPE)
x = self.ups[i](x)
xs = None
for j in range(self.num_kernels):
if xs is None:
xs = self.resblocks[i * self.num_kernels + j](x)
else:
xs += self.resblocks[i * self.num_kernels + j](x)
x = xs / self.num_kernels
x = F.leaky_relu(x)
x = self.conv_post(x)
x = torch.tanh(x)
return x
def remove_weight_norm(self):
print("Removing weight norm...")
for l in self.ups:
remove_parametrizations(l, "weight")
for l in self.resblocks:
remove_parametrizations(l, "weight")
class DiscriminatorP(torch.nn.Module):
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
super(DiscriminatorP, self).__init__()
self.period = period
self.use_spectral_norm = use_spectral_norm
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
self.convs = nn.ModuleList(
[
norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(get_padding(kernel_size, 1), 0))),
]
)
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
def forward(self, x):
fmap = []
# 1d to 2d
b, c, t = x.shape
if t % self.period != 0: # pad first
n_pad = self.period - (t % self.period)
x = F.pad(x, (0, n_pad), "reflect")
t = t + n_pad
x = x.view(b, c, t // self.period, self.period)
for l in self.convs:
x = l(x)
x = F.leaky_relu(x, modules.LRELU_SLOPE)
fmap.append(x)
x = self.conv_post(x)
fmap.append(x)
x = torch.flatten(x, 1, -1)
return x, fmap
class DiscriminatorS(torch.nn.Module):
def __init__(self, use_spectral_norm=False):
super(DiscriminatorS, self).__init__()
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
self.convs = nn.ModuleList(
[
norm_f(Conv1d(1, 16, 15, 1, padding=7)),
norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
]
)
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
def forward(self, x):
fmap = []
for l in self.convs:
x = l(x)
x = F.leaky_relu(x, modules.LRELU_SLOPE)
fmap.append(x)
x = self.conv_post(x)
fmap.append(x)
x = torch.flatten(x, 1, -1)
return x, fmap
class MultiPeriodDiscriminator(torch.nn.Module):
def __init__(self, use_spectral_norm=False):
super(MultiPeriodDiscriminator, self).__init__()
periods = [2, 3, 5, 7, 11]
discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
discs = discs + [DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods]
self.discriminators = nn.ModuleList(discs)
def forward(self, y, y_hat):
y_d_rs = []
y_d_gs = []
fmap_rs = []
fmap_gs = []
for i, d in enumerate(self.discriminators):
y_d_r, fmap_r = d(y)
y_d_g, fmap_g = d(y_hat)
y_d_rs.append(y_d_r)
y_d_gs.append(y_d_g)
fmap_rs.append(fmap_r)
fmap_gs.append(fmap_g)
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
class SpeakerEncoder(torch.nn.Module):
def __init__(self, mel_n_channels=80, model_num_layers=3, model_hidden_size=256, model_embedding_size=256):
super(SpeakerEncoder, self).__init__()
self.lstm = nn.LSTM(mel_n_channels, model_hidden_size, model_num_layers, batch_first=True)
self.linear = nn.Linear(model_hidden_size, model_embedding_size)
self.relu = nn.ReLU()
def forward(self, mels):
self.lstm.flatten_parameters()
_, (hidden, _) = self.lstm(mels)
embeds_raw = self.relu(self.linear(hidden[-1]))
return embeds_raw / torch.norm(embeds_raw, dim=1, keepdim=True)
def compute_partial_slices(self, total_frames, partial_frames, partial_hop):
mel_slices = []
for i in range(0, total_frames - partial_frames, partial_hop):
mel_range = torch.arange(i, i + partial_frames)
mel_slices.append(mel_range)
return mel_slices
def embed_utterance(self, mel, partial_frames=128, partial_hop=64):
mel_len = mel.size(1)
last_mel = mel[:, -partial_frames:]
if mel_len > partial_frames:
mel_slices = self.compute_partial_slices(mel_len, partial_frames, partial_hop)
mels = list(mel[:, s] for s in mel_slices)
mels.append(last_mel)
mels = torch.stack(tuple(mels), 0).squeeze(1)
with torch.no_grad():
partial_embeds = self(mels)
embed = torch.mean(partial_embeds, axis=0).unsqueeze(0)
# embed = embed / torch.linalg.norm(embed, 2)
else:
with torch.no_grad():
embed = self(last_mel)
return embed
class FreeVC(BaseVC):
"""
Papaer::
https://arxiv.org/abs/2210.15418#
Paper Abstract::
Voice conversion (VC) can be achieved by first extracting source content information and target speaker
information, and then reconstructing waveform with these information. However, current approaches normally
either extract dirty content information with speaker information leaked in, or demand a large amount of
annotated data for training. Besides, the quality of reconstructed waveform can be degraded by the
mismatch between conversion model and vocoder. In this paper, we adopt the end-to-end framework of VITS for
high-quality waveform reconstruction, and propose strategies for clean content information extraction without
text annotation. We disentangle content information by imposing an information bottleneck to WavLM features,
and propose the spectrogram-resize based data augmentation to improve the purity of extracted content
information. Experimental results show that the proposed method outperforms the latest VC models trained with
annotated data and has greater robustness.
Original Code::
https://github.com/OlaWod/FreeVC
Examples:
>>> from TTS.vc.configs.freevc_config import FreeVCConfig
>>> from TTS.vc.models.freevc import FreeVC
>>> config = FreeVCConfig()
>>> model = FreeVC(config)
"""
def __init__(self, config: Coqpit, speaker_manager: SpeakerManager = None):
super().__init__(config, None, speaker_manager, None)
self.init_multispeaker(config)
self.spec_channels = self.args.spec_channels
self.inter_channels = self.args.inter_channels
self.hidden_channels = self.args.hidden_channels
self.filter_channels = self.args.filter_channels
self.n_heads = self.args.n_heads
self.n_layers = self.args.n_layers
self.kernel_size = self.args.kernel_size
self.p_dropout = self.args.p_dropout
self.resblock = self.args.resblock
self.resblock_kernel_sizes = self.args.resblock_kernel_sizes
self.resblock_dilation_sizes = self.args.resblock_dilation_sizes
self.upsample_rates = self.args.upsample_rates
self.upsample_initial_channel = self.args.upsample_initial_channel
self.upsample_kernel_sizes = self.args.upsample_kernel_sizes
self.segment_size = self.args.segment_size
self.gin_channels = self.args.gin_channels
self.ssl_dim = self.args.ssl_dim
self.use_spk = self.args.use_spk
self.enc_p = Encoder(self.args.ssl_dim, self.inter_channels, self.hidden_channels, 5, 1, 16)
self.dec = Generator(
self.inter_channels,
self.resblock,
self.resblock_kernel_sizes,
self.resblock_dilation_sizes,
self.upsample_rates,
self.upsample_initial_channel,
self.upsample_kernel_sizes,
gin_channels=self.gin_channels,
)
self.enc_q = Encoder(
self.spec_channels, self.inter_channels, self.hidden_channels, 5, 1, 16, gin_channels=self.gin_channels
)
self.flow = ResidualCouplingBlock(
self.inter_channels, self.hidden_channels, 5, 1, 4, gin_channels=self.gin_channels
)
if not self.use_spk:
self.enc_spk = SpeakerEncoder(model_hidden_size=self.gin_channels, model_embedding_size=self.gin_channels)
else:
self.load_pretrained_speaker_encoder()
self.wavlm = get_wavlm()
@property
def device(self):
return next(self.parameters()).device
def load_pretrained_speaker_encoder(self):
"""Load pretrained speaker encoder model as mentioned in the paper."""
print(" > Loading pretrained speaker encoder model ...")
self.enc_spk_ex = SpeakerEncoderEx(
"https://github.com/coqui-ai/TTS/releases/download/v0.13.0_models/speaker_encoder.pt"
)
def init_multispeaker(self, config: Coqpit):
"""Initialize multi-speaker modules of a model. A model can be trained either with a speaker embedding layer
or with external `d_vectors` computed from a speaker encoder model.
You must provide a `speaker_manager` at initialization to set up the multi-speaker modules.
Args:
config (Coqpit): Model configuration.
data (List, optional): Dataset items to infer number of speakers. Defaults to None.
"""
self.num_spks = self.args.num_spks
if self.speaker_manager:
self.num_spks = self.speaker_manager.num_spks
def forward(
self,
c: torch.Tensor,
spec: torch.Tensor,
g: Optional[torch.Tensor] = None,
mel: Optional[torch.Tensor] = None,
c_lengths: Optional[torch.Tensor] = None,
spec_lengths: Optional[torch.Tensor] = None,
) -> Tuple[
torch.Tensor,
torch.Tensor,
torch.Tensor,
Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor],
]:
"""
Forward pass of the model.
Args:
c: WavLM features. Shape: (batch_size, c_seq_len).
spec: The input spectrogram. Shape: (batch_size, spec_seq_len, spec_dim).
g: The speaker embedding. Shape: (batch_size, spk_emb_dim).
mel: The input mel-spectrogram for the speaker encoder. Shape: (batch_size, mel_seq_len, mel_dim).
c_lengths: The lengths of the WavLM features. Shape: (batch_size,).
spec_lengths: The lengths of the spectrogram. Shape: (batch_size,).
Returns:
o: The output spectrogram. Shape: (batch_size, spec_seq_len, spec_dim).
ids_slice: The slice indices. Shape: (batch_size, num_slices).
spec_mask: The spectrogram mask. Shape: (batch_size, spec_seq_len).
(z, z_p, m_p, logs_p, m_q, logs_q): A tuple of latent variables.
"""
# If c_lengths is None, set it to the length of the last dimension of c
if c_lengths is None:
c_lengths = (torch.ones(c.size(0)) * c.size(-1)).to(c.device)
# If spec_lengths is None, set it to the length of the last dimension of spec
if spec_lengths is None:
spec_lengths = (torch.ones(spec.size(0)) * spec.size(-1)).to(spec.device)
# If use_spk is False, compute g from mel using enc_spk
g = None
if not self.use_spk:
g = self.enc_spk(mel).unsqueeze(-1)
# Compute m_p, logs_p, z, m_q, logs_q, and spec_mask using enc_p and enc_q
_, m_p, logs_p, _ = self.enc_p(c, c_lengths)
z, m_q, logs_q, spec_mask = self.enc_q(spec.transpose(1, 2), spec_lengths, g=g)
# Compute z_p using flow
z_p = self.flow(z, spec_mask, g=g)
# Randomly slice z and compute o using dec
z_slice, ids_slice = commons.rand_slice_segments(z, spec_lengths, self.segment_size)
o = self.dec(z_slice, g=g)
return o, ids_slice, spec_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
@torch.no_grad()
def inference(self, c, g=None, mel=None, c_lengths=None):
"""
Inference pass of the model
Args:
c (torch.Tensor): Input tensor. Shape: (batch_size, c_seq_len).
g (torch.Tensor): Speaker embedding tensor. Shape: (batch_size, spk_emb_dim).
mel (torch.Tensor): Mel-spectrogram tensor. Shape: (batch_size, mel_seq_len, mel_dim).
c_lengths (torch.Tensor): Lengths of the input tensor. Shape: (batch_size,).
Returns:
torch.Tensor: Output tensor.
"""
if c_lengths == None:
c_lengths = (torch.ones(c.size(0)) * c.size(-1)).to(c.device)
if not self.use_spk:
g = self.enc_spk.embed_utterance(mel)
g = g.unsqueeze(-1)
z_p, m_p, logs_p, c_mask = self.enc_p(c, c_lengths)
z = self.flow(z_p, c_mask, g=g, reverse=True)
o = self.dec(z * c_mask, g=g)
return o
def extract_wavlm_features(self, y):
"""Extract WavLM features from an audio tensor.
Args:
y (torch.Tensor): Audio tensor. Shape: (batch_size, audio_seq_len).
"""
with torch.no_grad():
c = self.wavlm.extract_features(y)[0]
c = c.transpose(1, 2)
return c
def load_audio(self, wav):
"""Read and format the input audio."""
if isinstance(wav, str):
wav, _ = librosa.load(wav, sr=self.config.audio.input_sample_rate)
if isinstance(wav, np.ndarray):
wav = torch.from_numpy(wav).to(self.device)
if isinstance(wav, torch.Tensor):
wav = wav.to(self.device)
if isinstance(wav, list):
wav = torch.from_numpy(np.array(wav)).to(self.device)
return wav.float()
@torch.inference_mode()
def voice_conversion(self, src, tgt):
"""
Voice conversion pass of the model.
Args:
src (str or torch.Tensor): Source utterance.
tgt (str or torch.Tensor): Target utterance.
Returns:
torch.Tensor: Output tensor.
"""
wav_tgt = self.load_audio(tgt).cpu().numpy()
wav_tgt, _ = librosa.effects.trim(wav_tgt, top_db=20)
if self.config.model_args.use_spk:
g_tgt = self.enc_spk_ex.embed_utterance(wav_tgt)
g_tgt = torch.from_numpy(g_tgt)[None, :, None].to(self.device)
else:
wav_tgt = torch.from_numpy(wav_tgt).unsqueeze(0).to(self.device)
mel_tgt = mel_spectrogram_torch(
wav_tgt,
self.config.audio.filter_length,
self.config.audio.n_mel_channels,
self.config.audio.input_sample_rate,
self.config.audio.hop_length,
self.config.audio.win_length,
self.config.audio.mel_fmin,
self.config.audio.mel_fmax,
)
# src
wav_src = self.load_audio(src)
c = self.extract_wavlm_features(wav_src[None, :])
if self.config.model_args.use_spk:
audio = self.inference(c, g=g_tgt)
else:
audio = self.inference(c, mel=mel_tgt.transpose(1, 2))
audio = audio[0][0].data.cpu().float().numpy()
return audio
def eval_step():
...
@staticmethod
def init_from_config(config: FreeVCConfig, samples: Union[List[List], List[Dict]] = None, verbose=True):
model = FreeVC(config)
return model
def load_checkpoint(self, config, checkpoint_path, eval=False, strict=True, cache=False):
state = load_fsspec(checkpoint_path, map_location=torch.device("cpu"), cache=cache)
self.load_state_dict(state["model"], strict=strict)
if eval:
self.eval()
def train_step():
...
|