xTTS-fr-cpu / TTS /tts /layers /bark /load_model.py
Shadhil's picture
voice-clone with single audio sample input
9b2107c
raw
history blame
5.43 kB
import contextlib
import functools
import hashlib
import logging
import os
import requests
import torch
import tqdm
from TTS.tts.layers.bark.model import GPT, GPTConfig
from TTS.tts.layers.bark.model_fine import FineGPT, FineGPTConfig
if (
torch.cuda.is_available()
and hasattr(torch.cuda, "amp")
and hasattr(torch.cuda.amp, "autocast")
and torch.cuda.is_bf16_supported()
):
autocast = functools.partial(torch.cuda.amp.autocast, dtype=torch.bfloat16)
else:
@contextlib.contextmanager
def autocast():
yield
# hold models in global scope to lazy load
logger = logging.getLogger(__name__)
if not hasattr(torch.nn.functional, "scaled_dot_product_attention"):
logger.warning(
"torch version does not support flash attention. You will get significantly faster"
+ " inference speed by upgrade torch to newest version / nightly."
)
def _md5(fname):
hash_md5 = hashlib.md5()
with open(fname, "rb") as f:
for chunk in iter(lambda: f.read(4096), b""):
hash_md5.update(chunk)
return hash_md5.hexdigest()
def _download(from_s3_path, to_local_path, CACHE_DIR):
os.makedirs(CACHE_DIR, exist_ok=True)
response = requests.get(from_s3_path, stream=True)
total_size_in_bytes = int(response.headers.get("content-length", 0))
block_size = 1024 # 1 Kibibyte
progress_bar = tqdm.tqdm(total=total_size_in_bytes, unit="iB", unit_scale=True)
with open(to_local_path, "wb") as file:
for data in response.iter_content(block_size):
progress_bar.update(len(data))
file.write(data)
progress_bar.close()
if total_size_in_bytes not in [0, progress_bar.n]:
raise ValueError("ERROR, something went wrong")
class InferenceContext:
def __init__(self, benchmark=False):
# we can't expect inputs to be the same length, so disable benchmarking by default
self._chosen_cudnn_benchmark = benchmark
self._cudnn_benchmark = None
def __enter__(self):
self._cudnn_benchmark = torch.backends.cudnn.benchmark
torch.backends.cudnn.benchmark = self._chosen_cudnn_benchmark
def __exit__(self, exc_type, exc_value, exc_traceback):
torch.backends.cudnn.benchmark = self._cudnn_benchmark
if torch.cuda.is_available():
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
@contextlib.contextmanager
def inference_mode():
with InferenceContext(), torch.inference_mode(), torch.no_grad(), autocast():
yield
def clear_cuda_cache():
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.synchronize()
def load_model(ckpt_path, device, config, model_type="text"):
logger.info(f"loading {model_type} model from {ckpt_path}...")
if device == "cpu":
logger.warning("No GPU being used. Careful, Inference might be extremely slow!")
if model_type == "text":
ConfigClass = GPTConfig
ModelClass = GPT
elif model_type == "coarse":
ConfigClass = GPTConfig
ModelClass = GPT
elif model_type == "fine":
ConfigClass = FineGPTConfig
ModelClass = FineGPT
else:
raise NotImplementedError()
if (
not config.USE_SMALLER_MODELS
and os.path.exists(ckpt_path)
and _md5(ckpt_path) != config.REMOTE_MODEL_PATHS[model_type]["checksum"]
):
logger.warning(f"found outdated {model_type} model, removing...")
os.remove(ckpt_path)
if not os.path.exists(ckpt_path):
logger.info(f"{model_type} model not found, downloading...")
_download(config.REMOTE_MODEL_PATHS[model_type]["path"], ckpt_path, config.CACHE_DIR)
checkpoint = torch.load(ckpt_path, map_location=device)
# this is a hack
model_args = checkpoint["model_args"]
if "input_vocab_size" not in model_args:
model_args["input_vocab_size"] = model_args["vocab_size"]
model_args["output_vocab_size"] = model_args["vocab_size"]
del model_args["vocab_size"]
gptconf = ConfigClass(**checkpoint["model_args"])
if model_type == "text":
config.semantic_config = gptconf
elif model_type == "coarse":
config.coarse_config = gptconf
elif model_type == "fine":
config.fine_config = gptconf
model = ModelClass(gptconf)
state_dict = checkpoint["model"]
# fixup checkpoint
unwanted_prefix = "_orig_mod."
for k, _ in list(state_dict.items()):
if k.startswith(unwanted_prefix):
state_dict[k[len(unwanted_prefix) :]] = state_dict.pop(k)
extra_keys = set(state_dict.keys()) - set(model.state_dict().keys())
extra_keys = set(k for k in extra_keys if not k.endswith(".attn.bias"))
missing_keys = set(model.state_dict().keys()) - set(state_dict.keys())
missing_keys = set(k for k in missing_keys if not k.endswith(".attn.bias"))
if len(extra_keys) != 0:
raise ValueError(f"extra keys found: {extra_keys}")
if len(missing_keys) != 0:
raise ValueError(f"missing keys: {missing_keys}")
model.load_state_dict(state_dict, strict=False)
n_params = model.get_num_params()
val_loss = checkpoint["best_val_loss"].item()
logger.info(f"model loaded: {round(n_params/1e6,1)}M params, {round(val_loss,3)} loss")
model.eval()
model.to(device)
del checkpoint, state_dict
clear_cuda_cache()
return model, config