Spaces:
Sleeping
Sleeping
from typing import List, Tuple, Union | |
import torch | |
import torch.nn as nn # pylint: disable=consider-using-from-import | |
import torch.nn.functional as F | |
from TTS.tts.layers.delightful_tts.conformer import ConformerMultiHeadedSelfAttention | |
from TTS.tts.layers.delightful_tts.conv_layers import CoordConv1d | |
from TTS.tts.layers.delightful_tts.networks import STL | |
def get_mask_from_lengths(lengths: torch.Tensor) -> torch.Tensor: | |
batch_size = lengths.shape[0] | |
max_len = torch.max(lengths).item() | |
ids = torch.arange(0, max_len, device=lengths.device).unsqueeze(0).expand(batch_size, -1) | |
mask = ids >= lengths.unsqueeze(1).expand(-1, max_len) | |
return mask | |
def stride_lens(lens: torch.Tensor, stride: int = 2) -> torch.Tensor: | |
return torch.ceil(lens / stride).int() | |
class ReferenceEncoder(nn.Module): | |
""" | |
Referance encoder for utterance and phoneme prosody encoders. Reference encoder | |
made up of convolution and RNN layers. | |
Args: | |
num_mels (int): Number of mel frames to produce. | |
ref_enc_filters (list[int]): List of channel sizes for encoder layers. | |
ref_enc_size (int): Size of the kernel for the conv layers. | |
ref_enc_strides (List[int]): List of strides to use for conv layers. | |
ref_enc_gru_size (int): Number of hidden features for the gated recurrent unit. | |
Inputs: inputs, mask | |
- **inputs** (batch, dim, time): Tensor containing mel vector | |
- **lengths** (batch): Tensor containing the mel lengths. | |
Returns: | |
- **outputs** (batch, time, dim): Tensor produced by Reference Encoder. | |
""" | |
def __init__( | |
self, | |
num_mels: int, | |
ref_enc_filters: List[Union[int, int, int, int, int, int]], | |
ref_enc_size: int, | |
ref_enc_strides: List[Union[int, int, int, int, int]], | |
ref_enc_gru_size: int, | |
): | |
super().__init__() | |
n_mel_channels = num_mels | |
self.n_mel_channels = n_mel_channels | |
K = len(ref_enc_filters) | |
filters = [self.n_mel_channels] + ref_enc_filters | |
strides = [1] + ref_enc_strides | |
# Use CoordConv at the first layer to better preserve positional information: https://arxiv.org/pdf/1811.02122.pdf | |
convs = [ | |
CoordConv1d( | |
in_channels=filters[0], | |
out_channels=filters[0 + 1], | |
kernel_size=ref_enc_size, | |
stride=strides[0], | |
padding=ref_enc_size // 2, | |
with_r=True, | |
) | |
] | |
convs2 = [ | |
nn.Conv1d( | |
in_channels=filters[i], | |
out_channels=filters[i + 1], | |
kernel_size=ref_enc_size, | |
stride=strides[i], | |
padding=ref_enc_size // 2, | |
) | |
for i in range(1, K) | |
] | |
convs.extend(convs2) | |
self.convs = nn.ModuleList(convs) | |
self.norms = nn.ModuleList([nn.InstanceNorm1d(num_features=ref_enc_filters[i], affine=True) for i in range(K)]) | |
self.gru = nn.GRU( | |
input_size=ref_enc_filters[-1], | |
hidden_size=ref_enc_gru_size, | |
batch_first=True, | |
) | |
def forward(self, x: torch.Tensor, mel_lens: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: | |
""" | |
inputs --- [N, n_mels, timesteps] | |
outputs --- [N, E//2] | |
""" | |
mel_masks = get_mask_from_lengths(mel_lens).unsqueeze(1) | |
x = x.masked_fill(mel_masks, 0) | |
for conv, norm in zip(self.convs, self.norms): | |
x = conv(x) | |
x = F.leaky_relu(x, 0.3) # [N, 128, Ty//2^K, n_mels//2^K] | |
x = norm(x) | |
for _ in range(2): | |
mel_lens = stride_lens(mel_lens) | |
mel_masks = get_mask_from_lengths(mel_lens) | |
x = x.masked_fill(mel_masks.unsqueeze(1), 0) | |
x = x.permute((0, 2, 1)) | |
x = torch.nn.utils.rnn.pack_padded_sequence(x, mel_lens.cpu().int(), batch_first=True, enforce_sorted=False) | |
self.gru.flatten_parameters() | |
x, memory = self.gru(x) # memory --- [N, Ty, E//2], out --- [1, N, E//2] | |
x, _ = torch.nn.utils.rnn.pad_packed_sequence(x, batch_first=True) | |
return x, memory, mel_masks | |
def calculate_channels( # pylint: disable=no-self-use | |
self, L: int, kernel_size: int, stride: int, pad: int, n_convs: int | |
) -> int: | |
for _ in range(n_convs): | |
L = (L - kernel_size + 2 * pad) // stride + 1 | |
return L | |
class UtteranceLevelProsodyEncoder(nn.Module): | |
def __init__( | |
self, | |
num_mels: int, | |
ref_enc_filters: List[Union[int, int, int, int, int, int]], | |
ref_enc_size: int, | |
ref_enc_strides: List[Union[int, int, int, int, int]], | |
ref_enc_gru_size: int, | |
dropout: float, | |
n_hidden: int, | |
bottleneck_size_u: int, | |
token_num: int, | |
): | |
""" | |
Encoder to extract prosody from utterance. it is made up of a reference encoder | |
with a couple of linear layers and style token layer with dropout. | |
Args: | |
num_mels (int): Number of mel frames to produce. | |
ref_enc_filters (list[int]): List of channel sizes for ref encoder layers. | |
ref_enc_size (int): Size of the kernel for the ref encoder conv layers. | |
ref_enc_strides (List[int]): List of strides to use for teh ref encoder conv layers. | |
ref_enc_gru_size (int): Number of hidden features for the gated recurrent unit. | |
dropout (float): Probability of dropout. | |
n_hidden (int): Size of hidden layers. | |
bottleneck_size_u (int): Size of the bottle neck layer. | |
Inputs: inputs, mask | |
- **inputs** (batch, dim, time): Tensor containing mel vector | |
- **lengths** (batch): Tensor containing the mel lengths. | |
Returns: | |
- **outputs** (batch, 1, dim): Tensor produced by Utterance Level Prosody Encoder. | |
""" | |
super().__init__() | |
self.E = n_hidden | |
self.d_q = self.d_k = n_hidden | |
bottleneck_size = bottleneck_size_u | |
self.encoder = ReferenceEncoder( | |
ref_enc_filters=ref_enc_filters, | |
ref_enc_gru_size=ref_enc_gru_size, | |
ref_enc_size=ref_enc_size, | |
ref_enc_strides=ref_enc_strides, | |
num_mels=num_mels, | |
) | |
self.encoder_prj = nn.Linear(ref_enc_gru_size, self.E // 2) | |
self.stl = STL(n_hidden=n_hidden, token_num=token_num) | |
self.encoder_bottleneck = nn.Linear(self.E, bottleneck_size) | |
self.dropout = nn.Dropout(dropout) | |
def forward(self, mels: torch.Tensor, mel_lens: torch.Tensor) -> torch.Tensor: | |
""" | |
Shapes: | |
mels: :math: `[B, C, T]` | |
mel_lens: :math: `[B]` | |
out --- [N, seq_len, E] | |
""" | |
_, embedded_prosody, _ = self.encoder(mels, mel_lens) | |
# Bottleneck | |
embedded_prosody = self.encoder_prj(embedded_prosody) | |
# Style Token | |
out = self.encoder_bottleneck(self.stl(embedded_prosody)) | |
out = self.dropout(out) | |
out = out.view((-1, 1, out.shape[3])) | |
return out | |
class PhonemeLevelProsodyEncoder(nn.Module): | |
def __init__( | |
self, | |
num_mels: int, | |
ref_enc_filters: List[Union[int, int, int, int, int, int]], | |
ref_enc_size: int, | |
ref_enc_strides: List[Union[int, int, int, int, int]], | |
ref_enc_gru_size: int, | |
dropout: float, | |
n_hidden: int, | |
n_heads: int, | |
bottleneck_size_p: int, | |
): | |
super().__init__() | |
self.E = n_hidden | |
self.d_q = self.d_k = n_hidden | |
bottleneck_size = bottleneck_size_p | |
self.encoder = ReferenceEncoder( | |
ref_enc_filters=ref_enc_filters, | |
ref_enc_gru_size=ref_enc_gru_size, | |
ref_enc_size=ref_enc_size, | |
ref_enc_strides=ref_enc_strides, | |
num_mels=num_mels, | |
) | |
self.encoder_prj = nn.Linear(ref_enc_gru_size, n_hidden) | |
self.attention = ConformerMultiHeadedSelfAttention( | |
d_model=n_hidden, | |
num_heads=n_heads, | |
dropout_p=dropout, | |
) | |
self.encoder_bottleneck = nn.Linear(n_hidden, bottleneck_size) | |
def forward( | |
self, | |
x: torch.Tensor, | |
src_mask: torch.Tensor, | |
mels: torch.Tensor, | |
mel_lens: torch.Tensor, | |
encoding: torch.Tensor, | |
) -> torch.Tensor: | |
""" | |
x --- [N, seq_len, encoder_embedding_dim] | |
mels --- [N, Ty/r, n_mels*r], r=1 | |
out --- [N, seq_len, bottleneck_size] | |
attn --- [N, seq_len, ref_len], Ty/r = ref_len | |
""" | |
embedded_prosody, _, mel_masks = self.encoder(mels, mel_lens) | |
# Bottleneck | |
embedded_prosody = self.encoder_prj(embedded_prosody) | |
attn_mask = mel_masks.view((mel_masks.shape[0], 1, 1, -1)) | |
x, _ = self.attention( | |
query=x, | |
key=embedded_prosody, | |
value=embedded_prosody, | |
mask=attn_mask, | |
encoding=encoding, | |
) | |
x = self.encoder_bottleneck(x) | |
x = x.masked_fill(src_mask.unsqueeze(-1), 0.0) | |
return x | |