Spaces:
Sleeping
Sleeping
import torch | |
from torch import nn | |
class TimeDepthSeparableConv(nn.Module): | |
"""Time depth separable convolution as in https://arxiv.org/pdf/1904.02619.pdf | |
It shows competative results with less computation and memory footprint.""" | |
def __init__(self, in_channels, hid_channels, out_channels, kernel_size, bias=True): | |
super().__init__() | |
self.in_channels = in_channels | |
self.out_channels = out_channels | |
self.hid_channels = hid_channels | |
self.kernel_size = kernel_size | |
self.time_conv = nn.Conv1d( | |
in_channels, | |
2 * hid_channels, | |
kernel_size=1, | |
stride=1, | |
padding=0, | |
bias=bias, | |
) | |
self.norm1 = nn.BatchNorm1d(2 * hid_channels) | |
self.depth_conv = nn.Conv1d( | |
hid_channels, | |
hid_channels, | |
kernel_size, | |
stride=1, | |
padding=(kernel_size - 1) // 2, | |
groups=hid_channels, | |
bias=bias, | |
) | |
self.norm2 = nn.BatchNorm1d(hid_channels) | |
self.time_conv2 = nn.Conv1d( | |
hid_channels, | |
out_channels, | |
kernel_size=1, | |
stride=1, | |
padding=0, | |
bias=bias, | |
) | |
self.norm3 = nn.BatchNorm1d(out_channels) | |
def forward(self, x): | |
x_res = x | |
x = self.time_conv(x) | |
x = self.norm1(x) | |
x = nn.functional.glu(x, dim=1) | |
x = self.depth_conv(x) | |
x = self.norm2(x) | |
x = x * torch.sigmoid(x) | |
x = self.time_conv2(x) | |
x = self.norm3(x) | |
x = x_res + x | |
return x | |
class TimeDepthSeparableConvBlock(nn.Module): | |
def __init__(self, in_channels, hid_channels, out_channels, num_layers, kernel_size, bias=True): | |
super().__init__() | |
assert (kernel_size - 1) % 2 == 0 | |
assert num_layers > 1 | |
self.layers = nn.ModuleList() | |
layer = TimeDepthSeparableConv( | |
in_channels, hid_channels, out_channels if num_layers == 1 else hid_channels, kernel_size, bias | |
) | |
self.layers.append(layer) | |
for idx in range(num_layers - 1): | |
layer = TimeDepthSeparableConv( | |
hid_channels, | |
hid_channels, | |
out_channels if (idx + 1) == (num_layers - 1) else hid_channels, | |
kernel_size, | |
bias, | |
) | |
self.layers.append(layer) | |
def forward(self, x, mask): | |
for layer in self.layers: | |
x = layer(x * mask) | |
return x | |