Spaces:
Sleeping
Sleeping
import math | |
import numpy as np | |
import torch | |
from coqpit import Coqpit | |
from torch import nn | |
from torch.nn import functional | |
from TTS.tts.utils.helpers import sequence_mask | |
from TTS.tts.utils.ssim import SSIMLoss as _SSIMLoss | |
from TTS.utils.audio.torch_transforms import TorchSTFT | |
# pylint: disable=abstract-method | |
# relates https://github.com/pytorch/pytorch/issues/42305 | |
class L1LossMasked(nn.Module): | |
def __init__(self, seq_len_norm): | |
super().__init__() | |
self.seq_len_norm = seq_len_norm | |
def forward(self, x, target, length): | |
""" | |
Args: | |
x: A Variable containing a FloatTensor of size | |
(batch, max_len, dim) which contains the | |
unnormalized probability for each class. | |
target: A Variable containing a LongTensor of size | |
(batch, max_len, dim) which contains the index of the true | |
class for each corresponding step. | |
length: A Variable containing a LongTensor of size (batch,) | |
which contains the length of each data in a batch. | |
Shapes: | |
x: B x T X D | |
target: B x T x D | |
length: B | |
Returns: | |
loss: An average loss value in range [0, 1] masked by the length. | |
""" | |
# mask: (batch, max_len, 1) | |
target.requires_grad = False | |
mask = sequence_mask(sequence_length=length, max_len=target.size(1)).unsqueeze(2).float() | |
if self.seq_len_norm: | |
norm_w = mask / mask.sum(dim=1, keepdim=True) | |
out_weights = norm_w.div(target.shape[0] * target.shape[2]) | |
mask = mask.expand_as(x) | |
loss = functional.l1_loss(x * mask, target * mask, reduction="none") | |
loss = loss.mul(out_weights.to(loss.device)).sum() | |
else: | |
mask = mask.expand_as(x) | |
loss = functional.l1_loss(x * mask, target * mask, reduction="sum") | |
loss = loss / mask.sum() | |
return loss | |
class MSELossMasked(nn.Module): | |
def __init__(self, seq_len_norm): | |
super().__init__() | |
self.seq_len_norm = seq_len_norm | |
def forward(self, x, target, length): | |
""" | |
Args: | |
x: A Variable containing a FloatTensor of size | |
(batch, max_len, dim) which contains the | |
unnormalized probability for each class. | |
target: A Variable containing a LongTensor of size | |
(batch, max_len, dim) which contains the index of the true | |
class for each corresponding step. | |
length: A Variable containing a LongTensor of size (batch,) | |
which contains the length of each data in a batch. | |
Shapes: | |
- x: :math:`[B, T, D]` | |
- target: :math:`[B, T, D]` | |
- length: :math:`B` | |
Returns: | |
loss: An average loss value in range [0, 1] masked by the length. | |
""" | |
# mask: (batch, max_len, 1) | |
target.requires_grad = False | |
mask = sequence_mask(sequence_length=length, max_len=target.size(1)).unsqueeze(2).float() | |
if self.seq_len_norm: | |
norm_w = mask / mask.sum(dim=1, keepdim=True) | |
out_weights = norm_w.div(target.shape[0] * target.shape[2]) | |
mask = mask.expand_as(x) | |
loss = functional.mse_loss(x * mask, target * mask, reduction="none") | |
loss = loss.mul(out_weights.to(loss.device)).sum() | |
else: | |
mask = mask.expand_as(x) | |
loss = functional.mse_loss(x * mask, target * mask, reduction="sum") | |
loss = loss / mask.sum() | |
return loss | |
def sample_wise_min_max(x: torch.Tensor, mask: torch.Tensor) -> torch.Tensor: | |
"""Min-Max normalize tensor through first dimension | |
Shapes: | |
- x: :math:`[B, D1, D2]` | |
- m: :math:`[B, D1, 1]` | |
""" | |
maximum = torch.amax(x.masked_fill(~mask, 0), dim=(1, 2), keepdim=True) | |
minimum = torch.amin(x.masked_fill(~mask, np.inf), dim=(1, 2), keepdim=True) | |
return (x - minimum) / (maximum - minimum + 1e-8) | |
class SSIMLoss(torch.nn.Module): | |
"""SSIM loss as (1 - SSIM) | |
SSIM is explained here https://en.wikipedia.org/wiki/Structural_similarity | |
""" | |
def __init__(self): | |
super().__init__() | |
self.loss_func = _SSIMLoss() | |
def forward(self, y_hat, y, length): | |
""" | |
Args: | |
y_hat (tensor): model prediction values. | |
y (tensor): target values. | |
length (tensor): length of each sample in a batch for masking. | |
Shapes: | |
y_hat: B x T X D | |
y: B x T x D | |
length: B | |
Returns: | |
loss: An average loss value in range [0, 1] masked by the length. | |
""" | |
mask = sequence_mask(sequence_length=length, max_len=y.size(1)).unsqueeze(2) | |
y_norm = sample_wise_min_max(y, mask) | |
y_hat_norm = sample_wise_min_max(y_hat, mask) | |
ssim_loss = self.loss_func((y_norm * mask).unsqueeze(1), (y_hat_norm * mask).unsqueeze(1)) | |
if ssim_loss.item() > 1.0: | |
print(f" > SSIM loss is out-of-range {ssim_loss.item()}, setting it 1.0") | |
ssim_loss = torch.tensor(1.0, device=ssim_loss.device) | |
if ssim_loss.item() < 0.0: | |
print(f" > SSIM loss is out-of-range {ssim_loss.item()}, setting it 0.0") | |
ssim_loss = torch.tensor(0.0, device=ssim_loss.device) | |
return ssim_loss | |
class AttentionEntropyLoss(nn.Module): | |
# pylint: disable=R0201 | |
def forward(self, align): | |
""" | |
Forces attention to be more decisive by penalizing | |
soft attention weights | |
""" | |
entropy = torch.distributions.Categorical(probs=align).entropy() | |
loss = (entropy / np.log(align.shape[1])).mean() | |
return loss | |
class BCELossMasked(nn.Module): | |
"""BCE loss with masking. | |
Used mainly for stopnet in autoregressive models. | |
Args: | |
pos_weight (float): weight for positive samples. If set < 1, penalize early stopping. Defaults to None. | |
""" | |
def __init__(self, pos_weight: float = None): | |
super().__init__() | |
self.register_buffer("pos_weight", torch.tensor([pos_weight])) | |
def forward(self, x, target, length): | |
""" | |
Args: | |
x: A Variable containing a FloatTensor of size | |
(batch, max_len) which contains the | |
unnormalized probability for each class. | |
target: A Variable containing a LongTensor of size | |
(batch, max_len) which contains the index of the true | |
class for each corresponding step. | |
length: A Variable containing a LongTensor of size (batch,) | |
which contains the length of each data in a batch. | |
Shapes: | |
x: B x T | |
target: B x T | |
length: B | |
Returns: | |
loss: An average loss value in range [0, 1] masked by the length. | |
""" | |
target.requires_grad = False | |
if length is not None: | |
# mask: (batch, max_len, 1) | |
mask = sequence_mask(sequence_length=length, max_len=target.size(1)) | |
num_items = mask.sum() | |
loss = functional.binary_cross_entropy_with_logits( | |
x.masked_select(mask), | |
target.masked_select(mask), | |
pos_weight=self.pos_weight.to(x.device), | |
reduction="sum", | |
) | |
else: | |
loss = functional.binary_cross_entropy_with_logits( | |
x, target, pos_weight=self.pos_weight.to(x.device), reduction="sum" | |
) | |
num_items = torch.numel(x) | |
loss = loss / num_items | |
return loss | |
class DifferentialSpectralLoss(nn.Module): | |
"""Differential Spectral Loss | |
https://arxiv.org/ftp/arxiv/papers/1909/1909.10302.pdf""" | |
def __init__(self, loss_func): | |
super().__init__() | |
self.loss_func = loss_func | |
def forward(self, x, target, length=None): | |
""" | |
Shapes: | |
x: B x T | |
target: B x T | |
length: B | |
Returns: | |
loss: An average loss value in range [0, 1] masked by the length. | |
""" | |
x_diff = x[:, 1:] - x[:, :-1] | |
target_diff = target[:, 1:] - target[:, :-1] | |
if length is None: | |
return self.loss_func(x_diff, target_diff) | |
return self.loss_func(x_diff, target_diff, length - 1) | |
class GuidedAttentionLoss(torch.nn.Module): | |
def __init__(self, sigma=0.4): | |
super().__init__() | |
self.sigma = sigma | |
def _make_ga_masks(self, ilens, olens): | |
B = len(ilens) | |
max_ilen = max(ilens) | |
max_olen = max(olens) | |
ga_masks = torch.zeros((B, max_olen, max_ilen)) | |
for idx, (ilen, olen) in enumerate(zip(ilens, olens)): | |
ga_masks[idx, :olen, :ilen] = self._make_ga_mask(ilen, olen, self.sigma) | |
return ga_masks | |
def forward(self, att_ws, ilens, olens): | |
ga_masks = self._make_ga_masks(ilens, olens).to(att_ws.device) | |
seq_masks = self._make_masks(ilens, olens).to(att_ws.device) | |
losses = ga_masks * att_ws | |
loss = torch.mean(losses.masked_select(seq_masks)) | |
return loss | |
def _make_ga_mask(ilen, olen, sigma): | |
grid_x, grid_y = torch.meshgrid(torch.arange(olen).to(olen), torch.arange(ilen).to(ilen)) | |
grid_x, grid_y = grid_x.float(), grid_y.float() | |
return 1.0 - torch.exp(-((grid_y / ilen - grid_x / olen) ** 2) / (2 * (sigma**2))) | |
def _make_masks(ilens, olens): | |
in_masks = sequence_mask(ilens) | |
out_masks = sequence_mask(olens) | |
return out_masks.unsqueeze(-1) & in_masks.unsqueeze(-2) | |
class Huber(nn.Module): | |
# pylint: disable=R0201 | |
def forward(self, x, y, length=None): | |
""" | |
Shapes: | |
x: B x T | |
y: B x T | |
length: B | |
""" | |
mask = sequence_mask(sequence_length=length, max_len=y.size(1)).unsqueeze(2).float() | |
return torch.nn.functional.smooth_l1_loss(x * mask, y * mask, reduction="sum") / mask.sum() | |
class ForwardSumLoss(nn.Module): | |
def __init__(self, blank_logprob=-1): | |
super().__init__() | |
self.log_softmax = torch.nn.LogSoftmax(dim=3) | |
self.ctc_loss = torch.nn.CTCLoss(zero_infinity=True) | |
self.blank_logprob = blank_logprob | |
def forward(self, attn_logprob, in_lens, out_lens): | |
key_lens = in_lens | |
query_lens = out_lens | |
attn_logprob_padded = torch.nn.functional.pad(input=attn_logprob, pad=(1, 0), value=self.blank_logprob) | |
total_loss = 0.0 | |
for bid in range(attn_logprob.shape[0]): | |
target_seq = torch.arange(1, key_lens[bid] + 1).unsqueeze(0) | |
curr_logprob = attn_logprob_padded[bid].permute(1, 0, 2)[: query_lens[bid], :, : key_lens[bid] + 1] | |
curr_logprob = self.log_softmax(curr_logprob[None])[0] | |
loss = self.ctc_loss( | |
curr_logprob, | |
target_seq, | |
input_lengths=query_lens[bid : bid + 1], | |
target_lengths=key_lens[bid : bid + 1], | |
) | |
total_loss = total_loss + loss | |
total_loss = total_loss / attn_logprob.shape[0] | |
return total_loss | |
######################## | |
# MODEL LOSS LAYERS | |
######################## | |
class TacotronLoss(torch.nn.Module): | |
"""Collection of Tacotron set-up based on provided config.""" | |
def __init__(self, c, ga_sigma=0.4): | |
super().__init__() | |
self.stopnet_pos_weight = c.stopnet_pos_weight | |
self.use_capacitron_vae = c.use_capacitron_vae | |
if self.use_capacitron_vae: | |
self.capacitron_capacity = c.capacitron_vae.capacitron_capacity | |
self.capacitron_vae_loss_alpha = c.capacitron_vae.capacitron_VAE_loss_alpha | |
self.ga_alpha = c.ga_alpha | |
self.decoder_diff_spec_alpha = c.decoder_diff_spec_alpha | |
self.postnet_diff_spec_alpha = c.postnet_diff_spec_alpha | |
self.decoder_alpha = c.decoder_loss_alpha | |
self.postnet_alpha = c.postnet_loss_alpha | |
self.decoder_ssim_alpha = c.decoder_ssim_alpha | |
self.postnet_ssim_alpha = c.postnet_ssim_alpha | |
self.config = c | |
# postnet and decoder loss | |
if c.loss_masking: | |
self.criterion = L1LossMasked(c.seq_len_norm) if c.model in ["Tacotron"] else MSELossMasked(c.seq_len_norm) | |
else: | |
self.criterion = nn.L1Loss() if c.model in ["Tacotron"] else nn.MSELoss() | |
# guided attention loss | |
if c.ga_alpha > 0: | |
self.criterion_ga = GuidedAttentionLoss(sigma=ga_sigma) | |
# differential spectral loss | |
if c.postnet_diff_spec_alpha > 0 or c.decoder_diff_spec_alpha > 0: | |
self.criterion_diff_spec = DifferentialSpectralLoss(loss_func=self.criterion) | |
# ssim loss | |
if c.postnet_ssim_alpha > 0 or c.decoder_ssim_alpha > 0: | |
self.criterion_ssim = SSIMLoss() | |
# stopnet loss | |
# pylint: disable=not-callable | |
self.criterion_st = BCELossMasked(pos_weight=torch.tensor(self.stopnet_pos_weight)) if c.stopnet else None | |
# For dev pruposes only | |
self.criterion_capacitron_reconstruction_loss = nn.L1Loss(reduction="sum") | |
def forward( | |
self, | |
postnet_output, | |
decoder_output, | |
mel_input, | |
linear_input, | |
stopnet_output, | |
stopnet_target, | |
stop_target_length, | |
capacitron_vae_outputs, | |
output_lens, | |
decoder_b_output, | |
alignments, | |
alignment_lens, | |
alignments_backwards, | |
input_lens, | |
): | |
# decoder outputs linear or mel spectrograms for Tacotron and Tacotron2 | |
# the target should be set acccordingly | |
postnet_target = linear_input if self.config.model.lower() in ["tacotron"] else mel_input | |
return_dict = {} | |
# remove lengths if no masking is applied | |
if not self.config.loss_masking: | |
output_lens = None | |
# decoder and postnet losses | |
if self.config.loss_masking: | |
if self.decoder_alpha > 0: | |
decoder_loss = self.criterion(decoder_output, mel_input, output_lens) | |
if self.postnet_alpha > 0: | |
postnet_loss = self.criterion(postnet_output, postnet_target, output_lens) | |
else: | |
if self.decoder_alpha > 0: | |
decoder_loss = self.criterion(decoder_output, mel_input) | |
if self.postnet_alpha > 0: | |
postnet_loss = self.criterion(postnet_output, postnet_target) | |
loss = self.decoder_alpha * decoder_loss + self.postnet_alpha * postnet_loss | |
return_dict["decoder_loss"] = decoder_loss | |
return_dict["postnet_loss"] = postnet_loss | |
if self.use_capacitron_vae: | |
# extract capacitron vae infos | |
posterior_distribution, prior_distribution, beta = capacitron_vae_outputs | |
# KL divergence term between the posterior and the prior | |
kl_term = torch.mean(torch.distributions.kl_divergence(posterior_distribution, prior_distribution)) | |
# Limit the mutual information between the data and latent space by the variational capacity limit | |
kl_capacity = kl_term - self.capacitron_capacity | |
# pass beta through softplus to keep it positive | |
beta = torch.nn.functional.softplus(beta)[0] | |
# This is the term going to the main ADAM optimiser, we detach beta because | |
# beta is optimised by a separate, SGD optimiser below | |
capacitron_vae_loss = beta.detach() * kl_capacity | |
# normalize the capacitron_vae_loss as in L1Loss or MSELoss. | |
# After this, both the standard loss and capacitron_vae_loss will be in the same scale. | |
# For this reason we don't need use L1Loss and MSELoss in "sum" reduction mode. | |
# Note: the batch is not considered because the L1Loss was calculated in "sum" mode | |
# divided by the batch size, So not dividing the capacitron_vae_loss by B is legitimate. | |
# get B T D dimension from input | |
B, T, D = mel_input.size() | |
# normalize | |
if self.config.loss_masking: | |
# if mask loss get T using the mask | |
T = output_lens.sum() / B | |
# Only for dev purposes to be able to compare the reconstruction loss with the values in the | |
# original Capacitron paper | |
return_dict["capaciton_reconstruction_loss"] = ( | |
self.criterion_capacitron_reconstruction_loss(decoder_output, mel_input) / decoder_output.size(0) | |
) + kl_capacity | |
capacitron_vae_loss = capacitron_vae_loss / (T * D) | |
capacitron_vae_loss = capacitron_vae_loss * self.capacitron_vae_loss_alpha | |
# This is the term to purely optimise beta and to pass into the SGD optimizer | |
beta_loss = torch.negative(beta) * kl_capacity.detach() | |
loss += capacitron_vae_loss | |
return_dict["capacitron_vae_loss"] = capacitron_vae_loss | |
return_dict["capacitron_vae_beta_loss"] = beta_loss | |
return_dict["capacitron_vae_kl_term"] = kl_term | |
return_dict["capacitron_beta"] = beta | |
stop_loss = ( | |
self.criterion_st(stopnet_output, stopnet_target, stop_target_length) | |
if self.config.stopnet | |
else torch.zeros(1) | |
) | |
loss += stop_loss | |
return_dict["stopnet_loss"] = stop_loss | |
# backward decoder loss (if enabled) | |
if self.config.bidirectional_decoder: | |
if self.config.loss_masking: | |
decoder_b_loss = self.criterion(torch.flip(decoder_b_output, dims=(1,)), mel_input, output_lens) | |
else: | |
decoder_b_loss = self.criterion(torch.flip(decoder_b_output, dims=(1,)), mel_input) | |
decoder_c_loss = torch.nn.functional.l1_loss(torch.flip(decoder_b_output, dims=(1,)), decoder_output) | |
loss += self.decoder_alpha * (decoder_b_loss + decoder_c_loss) | |
return_dict["decoder_b_loss"] = decoder_b_loss | |
return_dict["decoder_c_loss"] = decoder_c_loss | |
# double decoder consistency loss (if enabled) | |
if self.config.double_decoder_consistency: | |
if self.config.loss_masking: | |
decoder_b_loss = self.criterion(decoder_b_output, mel_input, output_lens) | |
else: | |
decoder_b_loss = self.criterion(decoder_b_output, mel_input) | |
# decoder_c_loss = torch.nn.functional.l1_loss(decoder_b_output, decoder_output) | |
attention_c_loss = torch.nn.functional.l1_loss(alignments, alignments_backwards) | |
loss += self.decoder_alpha * (decoder_b_loss + attention_c_loss) | |
return_dict["decoder_coarse_loss"] = decoder_b_loss | |
return_dict["decoder_ddc_loss"] = attention_c_loss | |
# guided attention loss (if enabled) | |
if self.config.ga_alpha > 0: | |
ga_loss = self.criterion_ga(alignments, input_lens, alignment_lens) | |
loss += ga_loss * self.ga_alpha | |
return_dict["ga_loss"] = ga_loss | |
# decoder differential spectral loss | |
if self.config.decoder_diff_spec_alpha > 0: | |
decoder_diff_spec_loss = self.criterion_diff_spec(decoder_output, mel_input, output_lens) | |
loss += decoder_diff_spec_loss * self.decoder_diff_spec_alpha | |
return_dict["decoder_diff_spec_loss"] = decoder_diff_spec_loss | |
# postnet differential spectral loss | |
if self.config.postnet_diff_spec_alpha > 0: | |
postnet_diff_spec_loss = self.criterion_diff_spec(postnet_output, postnet_target, output_lens) | |
loss += postnet_diff_spec_loss * self.postnet_diff_spec_alpha | |
return_dict["postnet_diff_spec_loss"] = postnet_diff_spec_loss | |
# decoder ssim loss | |
if self.config.decoder_ssim_alpha > 0: | |
decoder_ssim_loss = self.criterion_ssim(decoder_output, mel_input, output_lens) | |
loss += decoder_ssim_loss * self.postnet_ssim_alpha | |
return_dict["decoder_ssim_loss"] = decoder_ssim_loss | |
# postnet ssim loss | |
if self.config.postnet_ssim_alpha > 0: | |
postnet_ssim_loss = self.criterion_ssim(postnet_output, postnet_target, output_lens) | |
loss += postnet_ssim_loss * self.postnet_ssim_alpha | |
return_dict["postnet_ssim_loss"] = postnet_ssim_loss | |
return_dict["loss"] = loss | |
return return_dict | |
class GlowTTSLoss(torch.nn.Module): | |
def __init__(self): | |
super().__init__() | |
self.constant_factor = 0.5 * math.log(2 * math.pi) | |
def forward(self, z, means, scales, log_det, y_lengths, o_dur_log, o_attn_dur, x_lengths): | |
return_dict = {} | |
# flow loss - neg log likelihood | |
pz = torch.sum(scales) + 0.5 * torch.sum(torch.exp(-2 * scales) * (z - means) ** 2) | |
log_mle = self.constant_factor + (pz - torch.sum(log_det)) / (torch.sum(y_lengths) * z.shape[2]) | |
# duration loss - MSE | |
loss_dur = torch.sum((o_dur_log - o_attn_dur) ** 2) / torch.sum(x_lengths) | |
# duration loss - huber loss | |
# loss_dur = torch.nn.functional.smooth_l1_loss(o_dur_log, o_attn_dur, reduction="sum") / torch.sum(x_lengths) | |
return_dict["loss"] = log_mle + loss_dur | |
return_dict["log_mle"] = log_mle | |
return_dict["loss_dur"] = loss_dur | |
# check if any loss is NaN | |
for key, loss in return_dict.items(): | |
if torch.isnan(loss): | |
raise RuntimeError(f" [!] NaN loss with {key}.") | |
return return_dict | |
def mse_loss_custom(x, y): | |
"""MSE loss using the torch back-end without reduction. | |
It uses less VRAM than the raw code""" | |
expanded_x, expanded_y = torch.broadcast_tensors(x, y) | |
return torch._C._nn.mse_loss(expanded_x, expanded_y, 0) # pylint: disable=protected-access, c-extension-no-member | |
class MDNLoss(nn.Module): | |
"""Mixture of Density Network Loss as described in https://arxiv.org/pdf/2003.01950.pdf.""" | |
def forward(self, logp, text_lengths, mel_lengths): # pylint: disable=no-self-use | |
""" | |
Shapes: | |
mu: [B, D, T] | |
log_sigma: [B, D, T] | |
mel_spec: [B, D, T] | |
""" | |
B, T_seq, T_mel = logp.shape | |
log_alpha = logp.new_ones(B, T_seq, T_mel) * (-1e4) | |
log_alpha[:, 0, 0] = logp[:, 0, 0] | |
for t in range(1, T_mel): | |
prev_step = torch.cat( | |
[log_alpha[:, :, t - 1 : t], functional.pad(log_alpha[:, :, t - 1 : t], (0, 0, 1, -1), value=-1e4)], | |
dim=-1, | |
) | |
log_alpha[:, :, t] = torch.logsumexp(prev_step + 1e-4, dim=-1) + logp[:, :, t] | |
alpha_last = log_alpha[torch.arange(B), text_lengths - 1, mel_lengths - 1] | |
mdn_loss = -alpha_last.mean() / T_seq | |
return mdn_loss # , log_prob_matrix | |
class AlignTTSLoss(nn.Module): | |
"""Modified AlignTTS Loss. | |
Computes | |
- L1 and SSIM losses from output spectrograms. | |
- Huber loss for duration predictor. | |
- MDNLoss for Mixture of Density Network. | |
All loss values are aggregated by a weighted sum of the alpha values. | |
Args: | |
c (dict): TTS model configuration. | |
""" | |
def __init__(self, c): | |
super().__init__() | |
self.mdn_loss = MDNLoss() | |
self.spec_loss = MSELossMasked(False) | |
self.ssim = SSIMLoss() | |
self.dur_loss = MSELossMasked(False) | |
self.ssim_alpha = c.ssim_alpha | |
self.dur_loss_alpha = c.dur_loss_alpha | |
self.spec_loss_alpha = c.spec_loss_alpha | |
self.mdn_alpha = c.mdn_alpha | |
def forward( | |
self, logp, decoder_output, decoder_target, decoder_output_lens, dur_output, dur_target, input_lens, phase | |
): | |
# ssim_alpha, dur_loss_alpha, spec_loss_alpha, mdn_alpha = self.set_alphas(step) | |
spec_loss, ssim_loss, dur_loss, mdn_loss = 0, 0, 0, 0 | |
if phase == 0: | |
mdn_loss = self.mdn_loss(logp, input_lens, decoder_output_lens) | |
elif phase == 1: | |
spec_loss = self.spec_loss(decoder_output, decoder_target, decoder_output_lens) | |
ssim_loss = self.ssim(decoder_output, decoder_target, decoder_output_lens) | |
elif phase == 2: | |
mdn_loss = self.mdn_loss(logp, input_lens, decoder_output_lens) | |
spec_loss = self.spec_lossX(decoder_output, decoder_target, decoder_output_lens) | |
ssim_loss = self.ssim(decoder_output, decoder_target, decoder_output_lens) | |
elif phase == 3: | |
dur_loss = self.dur_loss(dur_output.unsqueeze(2), dur_target.unsqueeze(2), input_lens) | |
else: | |
mdn_loss = self.mdn_loss(logp, input_lens, decoder_output_lens) | |
spec_loss = self.spec_loss(decoder_output, decoder_target, decoder_output_lens) | |
ssim_loss = self.ssim(decoder_output, decoder_target, decoder_output_lens) | |
dur_loss = self.dur_loss(dur_output.unsqueeze(2), dur_target.unsqueeze(2), input_lens) | |
loss = ( | |
self.spec_loss_alpha * spec_loss | |
+ self.ssim_alpha * ssim_loss | |
+ self.dur_loss_alpha * dur_loss | |
+ self.mdn_alpha * mdn_loss | |
) | |
return {"loss": loss, "loss_l1": spec_loss, "loss_ssim": ssim_loss, "loss_dur": dur_loss, "mdn_loss": mdn_loss} | |
class VitsGeneratorLoss(nn.Module): | |
def __init__(self, c: Coqpit): | |
super().__init__() | |
self.kl_loss_alpha = c.kl_loss_alpha | |
self.gen_loss_alpha = c.gen_loss_alpha | |
self.feat_loss_alpha = c.feat_loss_alpha | |
self.dur_loss_alpha = c.dur_loss_alpha | |
self.mel_loss_alpha = c.mel_loss_alpha | |
self.spk_encoder_loss_alpha = c.speaker_encoder_loss_alpha | |
self.stft = TorchSTFT( | |
c.audio.fft_size, | |
c.audio.hop_length, | |
c.audio.win_length, | |
sample_rate=c.audio.sample_rate, | |
mel_fmin=c.audio.mel_fmin, | |
mel_fmax=c.audio.mel_fmax, | |
n_mels=c.audio.num_mels, | |
use_mel=True, | |
do_amp_to_db=True, | |
) | |
def feature_loss(feats_real, feats_generated): | |
loss = 0 | |
for dr, dg in zip(feats_real, feats_generated): | |
for rl, gl in zip(dr, dg): | |
rl = rl.float().detach() | |
gl = gl.float() | |
loss += torch.mean(torch.abs(rl - gl)) | |
return loss * 2 | |
def generator_loss(scores_fake): | |
loss = 0 | |
gen_losses = [] | |
for dg in scores_fake: | |
dg = dg.float() | |
l = torch.mean((1 - dg) ** 2) | |
gen_losses.append(l) | |
loss += l | |
return loss, gen_losses | |
def kl_loss(z_p, logs_q, m_p, logs_p, z_mask): | |
""" | |
z_p, logs_q: [b, h, t_t] | |
m_p, logs_p: [b, h, t_t] | |
""" | |
z_p = z_p.float() | |
logs_q = logs_q.float() | |
m_p = m_p.float() | |
logs_p = logs_p.float() | |
z_mask = z_mask.float() | |
kl = logs_p - logs_q - 0.5 | |
kl += 0.5 * ((z_p - m_p) ** 2) * torch.exp(-2.0 * logs_p) | |
kl = torch.sum(kl * z_mask) | |
l = kl / torch.sum(z_mask) | |
return l | |
def cosine_similarity_loss(gt_spk_emb, syn_spk_emb): | |
return -torch.nn.functional.cosine_similarity(gt_spk_emb, syn_spk_emb).mean() | |
def forward( | |
self, | |
mel_slice, | |
mel_slice_hat, | |
z_p, | |
logs_q, | |
m_p, | |
logs_p, | |
z_len, | |
scores_disc_fake, | |
feats_disc_fake, | |
feats_disc_real, | |
loss_duration, | |
use_speaker_encoder_as_loss=False, | |
gt_spk_emb=None, | |
syn_spk_emb=None, | |
): | |
""" | |
Shapes: | |
- mel_slice : :math:`[B, 1, T]` | |
- mel_slice_hat: :math:`[B, 1, T]` | |
- z_p: :math:`[B, C, T]` | |
- logs_q: :math:`[B, C, T]` | |
- m_p: :math:`[B, C, T]` | |
- logs_p: :math:`[B, C, T]` | |
- z_len: :math:`[B]` | |
- scores_disc_fake[i]: :math:`[B, C]` | |
- feats_disc_fake[i][j]: :math:`[B, C, T', P]` | |
- feats_disc_real[i][j]: :math:`[B, C, T', P]` | |
""" | |
loss = 0.0 | |
return_dict = {} | |
z_mask = sequence_mask(z_len).float() | |
# compute losses | |
loss_kl = ( | |
self.kl_loss(z_p=z_p, logs_q=logs_q, m_p=m_p, logs_p=logs_p, z_mask=z_mask.unsqueeze(1)) | |
* self.kl_loss_alpha | |
) | |
loss_feat = ( | |
self.feature_loss(feats_real=feats_disc_real, feats_generated=feats_disc_fake) * self.feat_loss_alpha | |
) | |
loss_gen = self.generator_loss(scores_fake=scores_disc_fake)[0] * self.gen_loss_alpha | |
loss_mel = torch.nn.functional.l1_loss(mel_slice, mel_slice_hat) * self.mel_loss_alpha | |
loss_duration = torch.sum(loss_duration.float()) * self.dur_loss_alpha | |
loss = loss_kl + loss_feat + loss_mel + loss_gen + loss_duration | |
if use_speaker_encoder_as_loss: | |
loss_se = self.cosine_similarity_loss(gt_spk_emb, syn_spk_emb) * self.spk_encoder_loss_alpha | |
loss = loss + loss_se | |
return_dict["loss_spk_encoder"] = loss_se | |
# pass losses to the dict | |
return_dict["loss_gen"] = loss_gen | |
return_dict["loss_kl"] = loss_kl | |
return_dict["loss_feat"] = loss_feat | |
return_dict["loss_mel"] = loss_mel | |
return_dict["loss_duration"] = loss_duration | |
return_dict["loss"] = loss | |
return return_dict | |
class VitsDiscriminatorLoss(nn.Module): | |
def __init__(self, c: Coqpit): | |
super().__init__() | |
self.disc_loss_alpha = c.disc_loss_alpha | |
def discriminator_loss(scores_real, scores_fake): | |
loss = 0 | |
real_losses = [] | |
fake_losses = [] | |
for dr, dg in zip(scores_real, scores_fake): | |
dr = dr.float() | |
dg = dg.float() | |
real_loss = torch.mean((1 - dr) ** 2) | |
fake_loss = torch.mean(dg**2) | |
loss += real_loss + fake_loss | |
real_losses.append(real_loss.item()) | |
fake_losses.append(fake_loss.item()) | |
return loss, real_losses, fake_losses | |
def forward(self, scores_disc_real, scores_disc_fake): | |
loss = 0.0 | |
return_dict = {} | |
loss_disc, loss_disc_real, _ = self.discriminator_loss( | |
scores_real=scores_disc_real, scores_fake=scores_disc_fake | |
) | |
return_dict["loss_disc"] = loss_disc * self.disc_loss_alpha | |
loss = loss + return_dict["loss_disc"] | |
return_dict["loss"] = loss | |
for i, ldr in enumerate(loss_disc_real): | |
return_dict[f"loss_disc_real_{i}"] = ldr | |
return return_dict | |
class ForwardTTSLoss(nn.Module): | |
"""Generic configurable ForwardTTS loss.""" | |
def __init__(self, c): | |
super().__init__() | |
if c.spec_loss_type == "mse": | |
self.spec_loss = MSELossMasked(False) | |
elif c.spec_loss_type == "l1": | |
self.spec_loss = L1LossMasked(False) | |
else: | |
raise ValueError(" [!] Unknown spec_loss_type {}".format(c.spec_loss_type)) | |
if c.duration_loss_type == "mse": | |
self.dur_loss = MSELossMasked(False) | |
elif c.duration_loss_type == "l1": | |
self.dur_loss = L1LossMasked(False) | |
elif c.duration_loss_type == "huber": | |
self.dur_loss = Huber() | |
else: | |
raise ValueError(" [!] Unknown duration_loss_type {}".format(c.duration_loss_type)) | |
if c.model_args.use_aligner: | |
self.aligner_loss = ForwardSumLoss() | |
self.aligner_loss_alpha = c.aligner_loss_alpha | |
if c.model_args.use_pitch: | |
self.pitch_loss = MSELossMasked(False) | |
self.pitch_loss_alpha = c.pitch_loss_alpha | |
if c.model_args.use_energy: | |
self.energy_loss = MSELossMasked(False) | |
self.energy_loss_alpha = c.energy_loss_alpha | |
if c.use_ssim_loss: | |
self.ssim = SSIMLoss() if c.use_ssim_loss else None | |
self.ssim_loss_alpha = c.ssim_loss_alpha | |
self.spec_loss_alpha = c.spec_loss_alpha | |
self.dur_loss_alpha = c.dur_loss_alpha | |
self.binary_alignment_loss_alpha = c.binary_align_loss_alpha | |
def _binary_alignment_loss(alignment_hard, alignment_soft): | |
"""Binary loss that forces soft alignments to match the hard alignments as | |
explained in `https://arxiv.org/pdf/2108.10447.pdf`. | |
""" | |
log_sum = torch.log(torch.clamp(alignment_soft[alignment_hard == 1], min=1e-12)).sum() | |
return -log_sum / alignment_hard.sum() | |
def forward( | |
self, | |
decoder_output, | |
decoder_target, | |
decoder_output_lens, | |
dur_output, | |
dur_target, | |
pitch_output, | |
pitch_target, | |
energy_output, | |
energy_target, | |
input_lens, | |
alignment_logprob=None, | |
alignment_hard=None, | |
alignment_soft=None, | |
binary_loss_weight=None, | |
): | |
loss = 0 | |
return_dict = {} | |
if hasattr(self, "ssim_loss") and self.ssim_loss_alpha > 0: | |
ssim_loss = self.ssim(decoder_output, decoder_target, decoder_output_lens) | |
loss = loss + self.ssim_loss_alpha * ssim_loss | |
return_dict["loss_ssim"] = self.ssim_loss_alpha * ssim_loss | |
if self.spec_loss_alpha > 0: | |
spec_loss = self.spec_loss(decoder_output, decoder_target, decoder_output_lens) | |
loss = loss + self.spec_loss_alpha * spec_loss | |
return_dict["loss_spec"] = self.spec_loss_alpha * spec_loss | |
if self.dur_loss_alpha > 0: | |
log_dur_tgt = torch.log(dur_target.float() + 1) | |
dur_loss = self.dur_loss(dur_output[:, :, None], log_dur_tgt[:, :, None], input_lens) | |
loss = loss + self.dur_loss_alpha * dur_loss | |
return_dict["loss_dur"] = self.dur_loss_alpha * dur_loss | |
if hasattr(self, "pitch_loss") and self.pitch_loss_alpha > 0: | |
pitch_loss = self.pitch_loss(pitch_output.transpose(1, 2), pitch_target.transpose(1, 2), input_lens) | |
loss = loss + self.pitch_loss_alpha * pitch_loss | |
return_dict["loss_pitch"] = self.pitch_loss_alpha * pitch_loss | |
if hasattr(self, "energy_loss") and self.energy_loss_alpha > 0: | |
energy_loss = self.energy_loss(energy_output.transpose(1, 2), energy_target.transpose(1, 2), input_lens) | |
loss = loss + self.energy_loss_alpha * energy_loss | |
return_dict["loss_energy"] = self.energy_loss_alpha * energy_loss | |
if hasattr(self, "aligner_loss") and self.aligner_loss_alpha > 0: | |
aligner_loss = self.aligner_loss(alignment_logprob, input_lens, decoder_output_lens) | |
loss = loss + self.aligner_loss_alpha * aligner_loss | |
return_dict["loss_aligner"] = self.aligner_loss_alpha * aligner_loss | |
if self.binary_alignment_loss_alpha > 0 and alignment_hard is not None: | |
binary_alignment_loss = self._binary_alignment_loss(alignment_hard, alignment_soft) | |
loss = loss + self.binary_alignment_loss_alpha * binary_alignment_loss | |
if binary_loss_weight: | |
return_dict["loss_binary_alignment"] = ( | |
self.binary_alignment_loss_alpha * binary_alignment_loss * binary_loss_weight | |
) | |
else: | |
return_dict["loss_binary_alignment"] = self.binary_alignment_loss_alpha * binary_alignment_loss | |
return_dict["loss"] = loss | |
return return_dict | |