Spaces:
Sleeping
Sleeping
import math | |
import torch | |
from torch import nn | |
from TTS.tts.layers.glow_tts.glow import WN | |
from TTS.tts.layers.glow_tts.transformer import RelativePositionTransformer | |
from TTS.tts.utils.helpers import sequence_mask | |
LRELU_SLOPE = 0.1 | |
def convert_pad_shape(pad_shape): | |
l = pad_shape[::-1] | |
pad_shape = [item for sublist in l for item in sublist] | |
return pad_shape | |
def init_weights(m, mean=0.0, std=0.01): | |
classname = m.__class__.__name__ | |
if classname.find("Conv") != -1: | |
m.weight.data.normal_(mean, std) | |
def get_padding(kernel_size, dilation=1): | |
return int((kernel_size * dilation - dilation) / 2) | |
class TextEncoder(nn.Module): | |
def __init__( | |
self, | |
n_vocab: int, | |
out_channels: int, | |
hidden_channels: int, | |
hidden_channels_ffn: int, | |
num_heads: int, | |
num_layers: int, | |
kernel_size: int, | |
dropout_p: float, | |
language_emb_dim: int = None, | |
): | |
"""Text Encoder for VITS model. | |
Args: | |
n_vocab (int): Number of characters for the embedding layer. | |
out_channels (int): Number of channels for the output. | |
hidden_channels (int): Number of channels for the hidden layers. | |
hidden_channels_ffn (int): Number of channels for the convolutional layers. | |
num_heads (int): Number of attention heads for the Transformer layers. | |
num_layers (int): Number of Transformer layers. | |
kernel_size (int): Kernel size for the FFN layers in Transformer network. | |
dropout_p (float): Dropout rate for the Transformer layers. | |
""" | |
super().__init__() | |
self.out_channels = out_channels | |
self.hidden_channels = hidden_channels | |
self.emb = nn.Embedding(n_vocab, hidden_channels) | |
nn.init.normal_(self.emb.weight, 0.0, hidden_channels**-0.5) | |
if language_emb_dim: | |
hidden_channels += language_emb_dim | |
self.encoder = RelativePositionTransformer( | |
in_channels=hidden_channels, | |
out_channels=hidden_channels, | |
hidden_channels=hidden_channels, | |
hidden_channels_ffn=hidden_channels_ffn, | |
num_heads=num_heads, | |
num_layers=num_layers, | |
kernel_size=kernel_size, | |
dropout_p=dropout_p, | |
layer_norm_type="2", | |
rel_attn_window_size=4, | |
) | |
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1) | |
def forward(self, x, x_lengths, lang_emb=None): | |
""" | |
Shapes: | |
- x: :math:`[B, T]` | |
- x_length: :math:`[B]` | |
""" | |
assert x.shape[0] == x_lengths.shape[0] | |
x = self.emb(x) * math.sqrt(self.hidden_channels) # [b, t, h] | |
# concat the lang emb in embedding chars | |
if lang_emb is not None: | |
x = torch.cat((x, lang_emb.transpose(2, 1).expand(x.size(0), x.size(1), -1)), dim=-1) | |
x = torch.transpose(x, 1, -1) # [b, h, t] | |
x_mask = torch.unsqueeze(sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype) # [b, 1, t] | |
x = self.encoder(x * x_mask, x_mask) | |
stats = self.proj(x) * x_mask | |
m, logs = torch.split(stats, self.out_channels, dim=1) | |
return x, m, logs, x_mask | |
class ResidualCouplingBlock(nn.Module): | |
def __init__( | |
self, | |
channels, | |
hidden_channels, | |
kernel_size, | |
dilation_rate, | |
num_layers, | |
dropout_p=0, | |
cond_channels=0, | |
mean_only=False, | |
): | |
assert channels % 2 == 0, "channels should be divisible by 2" | |
super().__init__() | |
self.half_channels = channels // 2 | |
self.mean_only = mean_only | |
# input layer | |
self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1) | |
# coupling layers | |
self.enc = WN( | |
hidden_channels, | |
hidden_channels, | |
kernel_size, | |
dilation_rate, | |
num_layers, | |
dropout_p=dropout_p, | |
c_in_channels=cond_channels, | |
) | |
# output layer | |
# Initializing last layer to 0 makes the affine coupling layers | |
# do nothing at first. This helps with training stability | |
self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1) | |
self.post.weight.data.zero_() | |
self.post.bias.data.zero_() | |
def forward(self, x, x_mask, g=None, reverse=False): | |
""" | |
Note: | |
Set `reverse` to True for inference. | |
Shapes: | |
- x: :math:`[B, C, T]` | |
- x_mask: :math:`[B, 1, T]` | |
- g: :math:`[B, C, 1]` | |
""" | |
x0, x1 = torch.split(x, [self.half_channels] * 2, 1) | |
h = self.pre(x0) * x_mask | |
h = self.enc(h, x_mask, g=g) | |
stats = self.post(h) * x_mask | |
if not self.mean_only: | |
m, log_scale = torch.split(stats, [self.half_channels] * 2, 1) | |
else: | |
m = stats | |
log_scale = torch.zeros_like(m) | |
if not reverse: | |
x1 = m + x1 * torch.exp(log_scale) * x_mask | |
x = torch.cat([x0, x1], 1) | |
logdet = torch.sum(log_scale, [1, 2]) | |
return x, logdet | |
else: | |
x1 = (x1 - m) * torch.exp(-log_scale) * x_mask | |
x = torch.cat([x0, x1], 1) | |
return x | |
class ResidualCouplingBlocks(nn.Module): | |
def __init__( | |
self, | |
channels: int, | |
hidden_channels: int, | |
kernel_size: int, | |
dilation_rate: int, | |
num_layers: int, | |
num_flows=4, | |
cond_channels=0, | |
): | |
"""Redisual Coupling blocks for VITS flow layers. | |
Args: | |
channels (int): Number of input and output tensor channels. | |
hidden_channels (int): Number of hidden network channels. | |
kernel_size (int): Kernel size of the WaveNet layers. | |
dilation_rate (int): Dilation rate of the WaveNet layers. | |
num_layers (int): Number of the WaveNet layers. | |
num_flows (int, optional): Number of Residual Coupling blocks. Defaults to 4. | |
cond_channels (int, optional): Number of channels of the conditioning tensor. Defaults to 0. | |
""" | |
super().__init__() | |
self.channels = channels | |
self.hidden_channels = hidden_channels | |
self.kernel_size = kernel_size | |
self.dilation_rate = dilation_rate | |
self.num_layers = num_layers | |
self.num_flows = num_flows | |
self.cond_channels = cond_channels | |
self.flows = nn.ModuleList() | |
for _ in range(num_flows): | |
self.flows.append( | |
ResidualCouplingBlock( | |
channels, | |
hidden_channels, | |
kernel_size, | |
dilation_rate, | |
num_layers, | |
cond_channels=cond_channels, | |
mean_only=True, | |
) | |
) | |
def forward(self, x, x_mask, g=None, reverse=False): | |
""" | |
Note: | |
Set `reverse` to True for inference. | |
Shapes: | |
- x: :math:`[B, C, T]` | |
- x_mask: :math:`[B, 1, T]` | |
- g: :math:`[B, C, 1]` | |
""" | |
if not reverse: | |
for flow in self.flows: | |
x, _ = flow(x, x_mask, g=g, reverse=reverse) | |
x = torch.flip(x, [1]) | |
else: | |
for flow in reversed(self.flows): | |
x = torch.flip(x, [1]) | |
x = flow(x, x_mask, g=g, reverse=reverse) | |
return x | |
class PosteriorEncoder(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
hidden_channels: int, | |
kernel_size: int, | |
dilation_rate: int, | |
num_layers: int, | |
cond_channels=0, | |
): | |
"""Posterior Encoder of VITS model. | |
:: | |
x -> conv1x1() -> WaveNet() (non-causal) -> conv1x1() -> split() -> [m, s] -> sample(m, s) -> z | |
Args: | |
in_channels (int): Number of input tensor channels. | |
out_channels (int): Number of output tensor channels. | |
hidden_channels (int): Number of hidden channels. | |
kernel_size (int): Kernel size of the WaveNet convolution layers. | |
dilation_rate (int): Dilation rate of the WaveNet layers. | |
num_layers (int): Number of the WaveNet layers. | |
cond_channels (int, optional): Number of conditioning tensor channels. Defaults to 0. | |
""" | |
super().__init__() | |
self.in_channels = in_channels | |
self.out_channels = out_channels | |
self.hidden_channels = hidden_channels | |
self.kernel_size = kernel_size | |
self.dilation_rate = dilation_rate | |
self.num_layers = num_layers | |
self.cond_channels = cond_channels | |
self.pre = nn.Conv1d(in_channels, hidden_channels, 1) | |
self.enc = WN( | |
hidden_channels, hidden_channels, kernel_size, dilation_rate, num_layers, c_in_channels=cond_channels | |
) | |
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1) | |
def forward(self, x, x_lengths, g=None): | |
""" | |
Shapes: | |
- x: :math:`[B, C, T]` | |
- x_lengths: :math:`[B, 1]` | |
- g: :math:`[B, C, 1]` | |
""" | |
x_mask = torch.unsqueeze(sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype) | |
x = self.pre(x) * x_mask | |
x = self.enc(x, x_mask, g=g) | |
stats = self.proj(x) * x_mask | |
mean, log_scale = torch.split(stats, self.out_channels, dim=1) | |
z = (mean + torch.randn_like(mean) * torch.exp(log_scale)) * x_mask | |
return z, mean, log_scale, x_mask | |