Spaces:
Sleeping
Sleeping
from dataclasses import dataclass, field | |
from typing import Dict, List, Tuple, Union | |
import torch | |
from coqpit import Coqpit | |
from torch import nn | |
from torch.cuda.amp.autocast_mode import autocast | |
from TTS.tts.layers.feed_forward.decoder import Decoder | |
from TTS.tts.layers.feed_forward.encoder import Encoder | |
from TTS.tts.layers.generic.aligner import AlignmentNetwork | |
from TTS.tts.layers.generic.pos_encoding import PositionalEncoding | |
from TTS.tts.layers.glow_tts.duration_predictor import DurationPredictor | |
from TTS.tts.models.base_tts import BaseTTS | |
from TTS.tts.utils.helpers import average_over_durations, generate_path, maximum_path, sequence_mask | |
from TTS.tts.utils.speakers import SpeakerManager | |
from TTS.tts.utils.text.tokenizer import TTSTokenizer | |
from TTS.tts.utils.visual import plot_alignment, plot_avg_energy, plot_avg_pitch, plot_spectrogram | |
from TTS.utils.io import load_fsspec | |
class ForwardTTSArgs(Coqpit): | |
"""ForwardTTS Model arguments. | |
Args: | |
num_chars (int): | |
Number of characters in the vocabulary. Defaults to 100. | |
out_channels (int): | |
Number of output channels. Defaults to 80. | |
hidden_channels (int): | |
Number of base hidden channels of the model. Defaults to 512. | |
use_aligner (bool): | |
Whether to use aligner network to learn the text to speech alignment or use pre-computed durations. | |
If set False, durations should be computed by `TTS/bin/compute_attention_masks.py` and path to the | |
pre-computed durations must be provided to `config.datasets[0].meta_file_attn_mask`. Defaults to True. | |
use_pitch (bool): | |
Use pitch predictor to learn the pitch. Defaults to True. | |
use_energy (bool): | |
Use energy predictor to learn the energy. Defaults to True. | |
duration_predictor_hidden_channels (int): | |
Number of hidden channels in the duration predictor. Defaults to 256. | |
duration_predictor_dropout_p (float): | |
Dropout rate for the duration predictor. Defaults to 0.1. | |
duration_predictor_kernel_size (int): | |
Kernel size of conv layers in the duration predictor. Defaults to 3. | |
pitch_predictor_hidden_channels (int): | |
Number of hidden channels in the pitch predictor. Defaults to 256. | |
pitch_predictor_dropout_p (float): | |
Dropout rate for the pitch predictor. Defaults to 0.1. | |
pitch_predictor_kernel_size (int): | |
Kernel size of conv layers in the pitch predictor. Defaults to 3. | |
pitch_embedding_kernel_size (int): | |
Kernel size of the projection layer in the pitch predictor. Defaults to 3. | |
energy_predictor_hidden_channels (int): | |
Number of hidden channels in the energy predictor. Defaults to 256. | |
energy_predictor_dropout_p (float): | |
Dropout rate for the energy predictor. Defaults to 0.1. | |
energy_predictor_kernel_size (int): | |
Kernel size of conv layers in the energy predictor. Defaults to 3. | |
energy_embedding_kernel_size (int): | |
Kernel size of the projection layer in the energy predictor. Defaults to 3. | |
positional_encoding (bool): | |
Whether to use positional encoding. Defaults to True. | |
positional_encoding_use_scale (bool): | |
Whether to use a learnable scale coeff in the positional encoding. Defaults to True. | |
length_scale (int): | |
Length scale that multiplies the predicted durations. Larger values result slower speech. Defaults to 1.0. | |
encoder_type (str): | |
Type of the encoder module. One of the encoders available in :class:`TTS.tts.layers.feed_forward.encoder`. | |
Defaults to `fftransformer` as in the paper. | |
encoder_params (dict): | |
Parameters of the encoder module. Defaults to ```{"hidden_channels_ffn": 1024, "num_heads": 1, "num_layers": 6, "dropout_p": 0.1}``` | |
decoder_type (str): | |
Type of the decoder module. One of the decoders available in :class:`TTS.tts.layers.feed_forward.decoder`. | |
Defaults to `fftransformer` as in the paper. | |
decoder_params (str): | |
Parameters of the decoder module. Defaults to ```{"hidden_channels_ffn": 1024, "num_heads": 1, "num_layers": 6, "dropout_p": 0.1}``` | |
detach_duration_predictor (bool): | |
Detach the input to the duration predictor from the earlier computation graph so that the duraiton loss | |
does not pass to the earlier layers. Defaults to True. | |
max_duration (int): | |
Maximum duration accepted by the model. Defaults to 75. | |
num_speakers (int): | |
Number of speakers for the speaker embedding layer. Defaults to 0. | |
speakers_file (str): | |
Path to the speaker mapping file for the Speaker Manager. Defaults to None. | |
speaker_embedding_channels (int): | |
Number of speaker embedding channels. Defaults to 256. | |
use_d_vector_file (bool): | |
Enable/Disable the use of d-vectors for multi-speaker training. Defaults to False. | |
d_vector_dim (int): | |
Number of d-vector channels. Defaults to 0. | |
""" | |
num_chars: int = None | |
out_channels: int = 80 | |
hidden_channels: int = 384 | |
use_aligner: bool = True | |
# pitch params | |
use_pitch: bool = True | |
pitch_predictor_hidden_channels: int = 256 | |
pitch_predictor_kernel_size: int = 3 | |
pitch_predictor_dropout_p: float = 0.1 | |
pitch_embedding_kernel_size: int = 3 | |
# energy params | |
use_energy: bool = False | |
energy_predictor_hidden_channels: int = 256 | |
energy_predictor_kernel_size: int = 3 | |
energy_predictor_dropout_p: float = 0.1 | |
energy_embedding_kernel_size: int = 3 | |
# duration params | |
duration_predictor_hidden_channels: int = 256 | |
duration_predictor_kernel_size: int = 3 | |
duration_predictor_dropout_p: float = 0.1 | |
positional_encoding: bool = True | |
poisitonal_encoding_use_scale: bool = True | |
length_scale: int = 1 | |
encoder_type: str = "fftransformer" | |
encoder_params: dict = field( | |
default_factory=lambda: {"hidden_channels_ffn": 1024, "num_heads": 1, "num_layers": 6, "dropout_p": 0.1} | |
) | |
decoder_type: str = "fftransformer" | |
decoder_params: dict = field( | |
default_factory=lambda: {"hidden_channels_ffn": 1024, "num_heads": 1, "num_layers": 6, "dropout_p": 0.1} | |
) | |
detach_duration_predictor: bool = False | |
max_duration: int = 75 | |
num_speakers: int = 1 | |
use_speaker_embedding: bool = False | |
speakers_file: str = None | |
use_d_vector_file: bool = False | |
d_vector_dim: int = None | |
d_vector_file: str = None | |
class ForwardTTS(BaseTTS): | |
"""General forward TTS model implementation that uses an encoder-decoder architecture with an optional alignment | |
network and a pitch predictor. | |
If the alignment network is used, the model learns the text-to-speech alignment | |
from the data instead of using pre-computed durations. | |
If the pitch predictor is used, the model trains a pitch predictor that predicts average pitch value for each | |
input character as in the FastPitch model. | |
`ForwardTTS` can be configured to one of these architectures, | |
- FastPitch | |
- SpeedySpeech | |
- FastSpeech | |
- FastSpeech2 (requires average speech energy predictor) | |
Args: | |
config (Coqpit): Model coqpit class. | |
speaker_manager (SpeakerManager): Speaker manager for multi-speaker training. Only used for multi-speaker models. | |
Defaults to None. | |
Examples: | |
>>> from TTS.tts.models.fast_pitch import ForwardTTS, ForwardTTSArgs | |
>>> config = ForwardTTSArgs() | |
>>> model = ForwardTTS(config) | |
""" | |
# pylint: disable=dangerous-default-value | |
def __init__( | |
self, | |
config: Coqpit, | |
ap: "AudioProcessor" = None, | |
tokenizer: "TTSTokenizer" = None, | |
speaker_manager: SpeakerManager = None, | |
): | |
super().__init__(config, ap, tokenizer, speaker_manager) | |
self._set_model_args(config) | |
self.init_multispeaker(config) | |
self.max_duration = self.args.max_duration | |
self.use_aligner = self.args.use_aligner | |
self.use_pitch = self.args.use_pitch | |
self.use_energy = self.args.use_energy | |
self.binary_loss_weight = 0.0 | |
self.length_scale = ( | |
float(self.args.length_scale) if isinstance(self.args.length_scale, int) else self.args.length_scale | |
) | |
self.emb = nn.Embedding(self.args.num_chars, self.args.hidden_channels) | |
self.encoder = Encoder( | |
self.args.hidden_channels, | |
self.args.hidden_channels, | |
self.args.encoder_type, | |
self.args.encoder_params, | |
self.embedded_speaker_dim, | |
) | |
if self.args.positional_encoding: | |
self.pos_encoder = PositionalEncoding(self.args.hidden_channels) | |
self.decoder = Decoder( | |
self.args.out_channels, | |
self.args.hidden_channels, | |
self.args.decoder_type, | |
self.args.decoder_params, | |
) | |
self.duration_predictor = DurationPredictor( | |
self.args.hidden_channels + self.embedded_speaker_dim, | |
self.args.duration_predictor_hidden_channels, | |
self.args.duration_predictor_kernel_size, | |
self.args.duration_predictor_dropout_p, | |
) | |
if self.args.use_pitch: | |
self.pitch_predictor = DurationPredictor( | |
self.args.hidden_channels + self.embedded_speaker_dim, | |
self.args.pitch_predictor_hidden_channels, | |
self.args.pitch_predictor_kernel_size, | |
self.args.pitch_predictor_dropout_p, | |
) | |
self.pitch_emb = nn.Conv1d( | |
1, | |
self.args.hidden_channels, | |
kernel_size=self.args.pitch_embedding_kernel_size, | |
padding=int((self.args.pitch_embedding_kernel_size - 1) / 2), | |
) | |
if self.args.use_energy: | |
self.energy_predictor = DurationPredictor( | |
self.args.hidden_channels + self.embedded_speaker_dim, | |
self.args.energy_predictor_hidden_channels, | |
self.args.energy_predictor_kernel_size, | |
self.args.energy_predictor_dropout_p, | |
) | |
self.energy_emb = nn.Conv1d( | |
1, | |
self.args.hidden_channels, | |
kernel_size=self.args.energy_embedding_kernel_size, | |
padding=int((self.args.energy_embedding_kernel_size - 1) / 2), | |
) | |
if self.args.use_aligner: | |
self.aligner = AlignmentNetwork( | |
in_query_channels=self.args.out_channels, in_key_channels=self.args.hidden_channels | |
) | |
def init_multispeaker(self, config: Coqpit): | |
"""Init for multi-speaker training. | |
Args: | |
config (Coqpit): Model configuration. | |
""" | |
self.embedded_speaker_dim = 0 | |
# init speaker manager | |
if self.speaker_manager is None and (config.use_d_vector_file or config.use_speaker_embedding): | |
raise ValueError( | |
" > SpeakerManager is not provided. You must provide the SpeakerManager before initializing a multi-speaker model." | |
) | |
# set number of speakers | |
if self.speaker_manager is not None: | |
self.num_speakers = self.speaker_manager.num_speakers | |
# init d-vector embedding | |
if config.use_d_vector_file: | |
self.embedded_speaker_dim = config.d_vector_dim | |
if self.args.d_vector_dim != self.args.hidden_channels: | |
self.proj_g = nn.Conv1d(self.args.d_vector_dim, self.args.hidden_channels, 1) | |
# init speaker embedding layer | |
if config.use_speaker_embedding and not config.use_d_vector_file: | |
print(" > Init speaker_embedding layer.") | |
self.emb_g = nn.Embedding(self.num_speakers, self.args.hidden_channels) | |
nn.init.uniform_(self.emb_g.weight, -0.1, 0.1) | |
def generate_attn(dr, x_mask, y_mask=None): | |
"""Generate an attention mask from the durations. | |
Shapes | |
- dr: :math:`(B, T_{en})` | |
- x_mask: :math:`(B, T_{en})` | |
- y_mask: :math:`(B, T_{de})` | |
""" | |
# compute decode mask from the durations | |
if y_mask is None: | |
y_lengths = dr.sum(1).long() | |
y_lengths[y_lengths < 1] = 1 | |
y_mask = torch.unsqueeze(sequence_mask(y_lengths, None), 1).to(dr.dtype) | |
attn_mask = torch.unsqueeze(x_mask, -1) * torch.unsqueeze(y_mask, 2) | |
attn = generate_path(dr, attn_mask.squeeze(1)).to(dr.dtype) | |
return attn | |
def expand_encoder_outputs(self, en, dr, x_mask, y_mask): | |
"""Generate attention alignment map from durations and | |
expand encoder outputs | |
Shapes: | |
- en: :math:`(B, D_{en}, T_{en})` | |
- dr: :math:`(B, T_{en})` | |
- x_mask: :math:`(B, T_{en})` | |
- y_mask: :math:`(B, T_{de})` | |
Examples:: | |
encoder output: [a,b,c,d] | |
durations: [1, 3, 2, 1] | |
expanded: [a, b, b, b, c, c, d] | |
attention map: [[0, 0, 0, 0, 0, 0, 1], | |
[0, 0, 0, 0, 1, 1, 0], | |
[0, 1, 1, 1, 0, 0, 0], | |
[1, 0, 0, 0, 0, 0, 0]] | |
""" | |
attn = self.generate_attn(dr, x_mask, y_mask) | |
o_en_ex = torch.matmul(attn.squeeze(1).transpose(1, 2).to(en.dtype), en.transpose(1, 2)).transpose(1, 2) | |
return o_en_ex, attn | |
def format_durations(self, o_dr_log, x_mask): | |
"""Format predicted durations. | |
1. Convert to linear scale from log scale | |
2. Apply the length scale for speed adjustment | |
3. Apply masking. | |
4. Cast 0 durations to 1. | |
5. Round the duration values. | |
Args: | |
o_dr_log: Log scale durations. | |
x_mask: Input text mask. | |
Shapes: | |
- o_dr_log: :math:`(B, T_{de})` | |
- x_mask: :math:`(B, T_{en})` | |
""" | |
o_dr = (torch.exp(o_dr_log) - 1) * x_mask * self.length_scale | |
o_dr[o_dr < 1] = 1.0 | |
o_dr = torch.round(o_dr) | |
return o_dr | |
def _forward_encoder( | |
self, x: torch.LongTensor, x_mask: torch.FloatTensor, g: torch.FloatTensor = None | |
) -> Tuple[torch.FloatTensor, torch.FloatTensor, torch.FloatTensor, torch.FloatTensor, torch.FloatTensor]: | |
"""Encoding forward pass. | |
1. Embed speaker IDs if multi-speaker mode. | |
2. Embed character sequences. | |
3. Run the encoder network. | |
4. Sum encoder outputs and speaker embeddings | |
Args: | |
x (torch.LongTensor): Input sequence IDs. | |
x_mask (torch.FloatTensor): Input squence mask. | |
g (torch.FloatTensor, optional): Conditioning vectors. In general speaker embeddings. Defaults to None. | |
Returns: | |
Tuple[torch.tensor, torch.tensor, torch.tensor, torch.tensor, torch.tensor]: | |
encoder output, encoder output for the duration predictor, input sequence mask, speaker embeddings, | |
character embeddings | |
Shapes: | |
- x: :math:`(B, T_{en})` | |
- x_mask: :math:`(B, 1, T_{en})` | |
- g: :math:`(B, C)` | |
""" | |
if hasattr(self, "emb_g"): | |
g = g.type(torch.LongTensor) | |
g = self.emb_g(g) # [B, C, 1] | |
if g is not None: | |
g = g.unsqueeze(-1) | |
# [B, T, C] | |
x_emb = self.emb(x) | |
# encoder pass | |
o_en = self.encoder(torch.transpose(x_emb, 1, -1), x_mask) | |
# speaker conditioning | |
# TODO: try different ways of conditioning | |
if g is not None: | |
o_en = o_en + g | |
return o_en, x_mask, g, x_emb | |
def _forward_decoder( | |
self, | |
o_en: torch.FloatTensor, | |
dr: torch.IntTensor, | |
x_mask: torch.FloatTensor, | |
y_lengths: torch.IntTensor, | |
g: torch.FloatTensor, | |
) -> Tuple[torch.FloatTensor, torch.FloatTensor]: | |
"""Decoding forward pass. | |
1. Compute the decoder output mask | |
2. Expand encoder output with the durations. | |
3. Apply position encoding. | |
4. Add speaker embeddings if multi-speaker mode. | |
5. Run the decoder. | |
Args: | |
o_en (torch.FloatTensor): Encoder output. | |
dr (torch.IntTensor): Ground truth durations or alignment network durations. | |
x_mask (torch.IntTensor): Input sequence mask. | |
y_lengths (torch.IntTensor): Output sequence lengths. | |
g (torch.FloatTensor): Conditioning vectors. In general speaker embeddings. | |
Returns: | |
Tuple[torch.FloatTensor, torch.FloatTensor]: Decoder output, attention map from durations. | |
""" | |
y_mask = torch.unsqueeze(sequence_mask(y_lengths, None), 1).to(o_en.dtype) | |
# expand o_en with durations | |
o_en_ex, attn = self.expand_encoder_outputs(o_en, dr, x_mask, y_mask) | |
# positional encoding | |
if hasattr(self, "pos_encoder"): | |
o_en_ex = self.pos_encoder(o_en_ex, y_mask) | |
# decoder pass | |
o_de = self.decoder(o_en_ex, y_mask, g=g) | |
return o_de.transpose(1, 2), attn.transpose(1, 2) | |
def _forward_pitch_predictor( | |
self, | |
o_en: torch.FloatTensor, | |
x_mask: torch.IntTensor, | |
pitch: torch.FloatTensor = None, | |
dr: torch.IntTensor = None, | |
) -> Tuple[torch.FloatTensor, torch.FloatTensor]: | |
"""Pitch predictor forward pass. | |
1. Predict pitch from encoder outputs. | |
2. In training - Compute average pitch values for each input character from the ground truth pitch values. | |
3. Embed average pitch values. | |
Args: | |
o_en (torch.FloatTensor): Encoder output. | |
x_mask (torch.IntTensor): Input sequence mask. | |
pitch (torch.FloatTensor, optional): Ground truth pitch values. Defaults to None. | |
dr (torch.IntTensor, optional): Ground truth durations. Defaults to None. | |
Returns: | |
Tuple[torch.FloatTensor, torch.FloatTensor]: Pitch embedding, pitch prediction. | |
Shapes: | |
- o_en: :math:`(B, C, T_{en})` | |
- x_mask: :math:`(B, 1, T_{en})` | |
- pitch: :math:`(B, 1, T_{de})` | |
- dr: :math:`(B, T_{en})` | |
""" | |
o_pitch = self.pitch_predictor(o_en, x_mask) | |
if pitch is not None: | |
avg_pitch = average_over_durations(pitch, dr) | |
o_pitch_emb = self.pitch_emb(avg_pitch) | |
return o_pitch_emb, o_pitch, avg_pitch | |
o_pitch_emb = self.pitch_emb(o_pitch) | |
return o_pitch_emb, o_pitch | |
def _forward_energy_predictor( | |
self, | |
o_en: torch.FloatTensor, | |
x_mask: torch.IntTensor, | |
energy: torch.FloatTensor = None, | |
dr: torch.IntTensor = None, | |
) -> Tuple[torch.FloatTensor, torch.FloatTensor]: | |
"""Energy predictor forward pass. | |
1. Predict energy from encoder outputs. | |
2. In training - Compute average pitch values for each input character from the ground truth pitch values. | |
3. Embed average energy values. | |
Args: | |
o_en (torch.FloatTensor): Encoder output. | |
x_mask (torch.IntTensor): Input sequence mask. | |
energy (torch.FloatTensor, optional): Ground truth energy values. Defaults to None. | |
dr (torch.IntTensor, optional): Ground truth durations. Defaults to None. | |
Returns: | |
Tuple[torch.FloatTensor, torch.FloatTensor]: Energy embedding, energy prediction. | |
Shapes: | |
- o_en: :math:`(B, C, T_{en})` | |
- x_mask: :math:`(B, 1, T_{en})` | |
- pitch: :math:`(B, 1, T_{de})` | |
- dr: :math:`(B, T_{en})` | |
""" | |
o_energy = self.energy_predictor(o_en, x_mask) | |
if energy is not None: | |
avg_energy = average_over_durations(energy, dr) | |
o_energy_emb = self.energy_emb(avg_energy) | |
return o_energy_emb, o_energy, avg_energy | |
o_energy_emb = self.energy_emb(o_energy) | |
return o_energy_emb, o_energy | |
def _forward_aligner( | |
self, x: torch.FloatTensor, y: torch.FloatTensor, x_mask: torch.IntTensor, y_mask: torch.IntTensor | |
) -> Tuple[torch.IntTensor, torch.FloatTensor, torch.FloatTensor, torch.FloatTensor]: | |
"""Aligner forward pass. | |
1. Compute a mask to apply to the attention map. | |
2. Run the alignment network. | |
3. Apply MAS to compute the hard alignment map. | |
4. Compute the durations from the hard alignment map. | |
Args: | |
x (torch.FloatTensor): Input sequence. | |
y (torch.FloatTensor): Output sequence. | |
x_mask (torch.IntTensor): Input sequence mask. | |
y_mask (torch.IntTensor): Output sequence mask. | |
Returns: | |
Tuple[torch.IntTensor, torch.FloatTensor, torch.FloatTensor, torch.FloatTensor]: | |
Durations from the hard alignment map, soft alignment potentials, log scale alignment potentials, | |
hard alignment map. | |
Shapes: | |
- x: :math:`[B, T_en, C_en]` | |
- y: :math:`[B, T_de, C_de]` | |
- x_mask: :math:`[B, 1, T_en]` | |
- y_mask: :math:`[B, 1, T_de]` | |
- o_alignment_dur: :math:`[B, T_en]` | |
- alignment_soft: :math:`[B, T_en, T_de]` | |
- alignment_logprob: :math:`[B, 1, T_de, T_en]` | |
- alignment_mas: :math:`[B, T_en, T_de]` | |
""" | |
attn_mask = torch.unsqueeze(x_mask, -1) * torch.unsqueeze(y_mask, 2) | |
alignment_soft, alignment_logprob = self.aligner(y.transpose(1, 2), x.transpose(1, 2), x_mask, None) | |
alignment_mas = maximum_path( | |
alignment_soft.squeeze(1).transpose(1, 2).contiguous(), attn_mask.squeeze(1).contiguous() | |
) | |
o_alignment_dur = torch.sum(alignment_mas, -1).int() | |
alignment_soft = alignment_soft.squeeze(1).transpose(1, 2) | |
return o_alignment_dur, alignment_soft, alignment_logprob, alignment_mas | |
def _set_speaker_input(self, aux_input: Dict): | |
d_vectors = aux_input.get("d_vectors", None) | |
speaker_ids = aux_input.get("speaker_ids", None) | |
if d_vectors is not None and speaker_ids is not None: | |
raise ValueError("[!] Cannot use d-vectors and speaker-ids together.") | |
if speaker_ids is not None and not hasattr(self, "emb_g"): | |
raise ValueError("[!] Cannot use speaker-ids without enabling speaker embedding.") | |
g = speaker_ids if speaker_ids is not None else d_vectors | |
return g | |
def forward( | |
self, | |
x: torch.LongTensor, | |
x_lengths: torch.LongTensor, | |
y_lengths: torch.LongTensor, | |
y: torch.FloatTensor = None, | |
dr: torch.IntTensor = None, | |
pitch: torch.FloatTensor = None, | |
energy: torch.FloatTensor = None, | |
aux_input: Dict = {"d_vectors": None, "speaker_ids": None}, # pylint: disable=unused-argument | |
) -> Dict: | |
"""Model's forward pass. | |
Args: | |
x (torch.LongTensor): Input character sequences. | |
x_lengths (torch.LongTensor): Input sequence lengths. | |
y_lengths (torch.LongTensor): Output sequnce lengths. Defaults to None. | |
y (torch.FloatTensor): Spectrogram frames. Only used when the alignment network is on. Defaults to None. | |
dr (torch.IntTensor): Character durations over the spectrogram frames. Only used when the alignment network is off. Defaults to None. | |
pitch (torch.FloatTensor): Pitch values for each spectrogram frame. Only used when the pitch predictor is on. Defaults to None. | |
energy (torch.FloatTensor): energy values for each spectrogram frame. Only used when the energy predictor is on. Defaults to None. | |
aux_input (Dict): Auxiliary model inputs for multi-speaker training. Defaults to `{"d_vectors": 0, "speaker_ids": None}`. | |
Shapes: | |
- x: :math:`[B, T_max]` | |
- x_lengths: :math:`[B]` | |
- y_lengths: :math:`[B]` | |
- y: :math:`[B, T_max2]` | |
- dr: :math:`[B, T_max]` | |
- g: :math:`[B, C]` | |
- pitch: :math:`[B, 1, T]` | |
""" | |
g = self._set_speaker_input(aux_input) | |
# compute sequence masks | |
y_mask = torch.unsqueeze(sequence_mask(y_lengths, None), 1).float() | |
x_mask = torch.unsqueeze(sequence_mask(x_lengths, x.shape[1]), 1).float() | |
# encoder pass | |
o_en, x_mask, g, x_emb = self._forward_encoder(x, x_mask, g) | |
# duration predictor pass | |
if self.args.detach_duration_predictor: | |
o_dr_log = self.duration_predictor(o_en.detach(), x_mask) | |
else: | |
o_dr_log = self.duration_predictor(o_en, x_mask) | |
o_dr = torch.clamp(torch.exp(o_dr_log) - 1, 0, self.max_duration) | |
# generate attn mask from predicted durations | |
o_attn = self.generate_attn(o_dr.squeeze(1), x_mask) | |
# aligner | |
o_alignment_dur = None | |
alignment_soft = None | |
alignment_logprob = None | |
alignment_mas = None | |
if self.use_aligner: | |
o_alignment_dur, alignment_soft, alignment_logprob, alignment_mas = self._forward_aligner( | |
x_emb, y, x_mask, y_mask | |
) | |
alignment_soft = alignment_soft.transpose(1, 2) | |
alignment_mas = alignment_mas.transpose(1, 2) | |
dr = o_alignment_dur | |
# pitch predictor pass | |
o_pitch = None | |
avg_pitch = None | |
if self.args.use_pitch: | |
o_pitch_emb, o_pitch, avg_pitch = self._forward_pitch_predictor(o_en, x_mask, pitch, dr) | |
o_en = o_en + o_pitch_emb | |
# energy predictor pass | |
o_energy = None | |
avg_energy = None | |
if self.args.use_energy: | |
o_energy_emb, o_energy, avg_energy = self._forward_energy_predictor(o_en, x_mask, energy, dr) | |
o_en = o_en + o_energy_emb | |
# decoder pass | |
o_de, attn = self._forward_decoder( | |
o_en, dr, x_mask, y_lengths, g=None | |
) # TODO: maybe pass speaker embedding (g) too | |
outputs = { | |
"model_outputs": o_de, # [B, T, C] | |
"durations_log": o_dr_log.squeeze(1), # [B, T] | |
"durations": o_dr.squeeze(1), # [B, T] | |
"attn_durations": o_attn, # for visualization [B, T_en, T_de'] | |
"pitch_avg": o_pitch, | |
"pitch_avg_gt": avg_pitch, | |
"energy_avg": o_energy, | |
"energy_avg_gt": avg_energy, | |
"alignments": attn, # [B, T_de, T_en] | |
"alignment_soft": alignment_soft, | |
"alignment_mas": alignment_mas, | |
"o_alignment_dur": o_alignment_dur, | |
"alignment_logprob": alignment_logprob, | |
"x_mask": x_mask, | |
"y_mask": y_mask, | |
} | |
return outputs | |
def inference(self, x, aux_input={"d_vectors": None, "speaker_ids": None}): # pylint: disable=unused-argument | |
"""Model's inference pass. | |
Args: | |
x (torch.LongTensor): Input character sequence. | |
aux_input (Dict): Auxiliary model inputs. Defaults to `{"d_vectors": None, "speaker_ids": None}`. | |
Shapes: | |
- x: [B, T_max] | |
- x_lengths: [B] | |
- g: [B, C] | |
""" | |
g = self._set_speaker_input(aux_input) | |
x_lengths = torch.tensor(x.shape[1:2]).to(x.device) | |
x_mask = torch.unsqueeze(sequence_mask(x_lengths, x.shape[1]), 1).to(x.dtype).float() | |
# encoder pass | |
o_en, x_mask, g, _ = self._forward_encoder(x, x_mask, g) | |
# duration predictor pass | |
o_dr_log = self.duration_predictor(o_en.squeeze(), x_mask) | |
o_dr = self.format_durations(o_dr_log, x_mask).squeeze(1) | |
y_lengths = o_dr.sum(1) | |
# pitch predictor pass | |
o_pitch = None | |
if self.args.use_pitch: | |
o_pitch_emb, o_pitch = self._forward_pitch_predictor(o_en, x_mask) | |
o_en = o_en + o_pitch_emb | |
# energy predictor pass | |
o_energy = None | |
if self.args.use_energy: | |
o_energy_emb, o_energy = self._forward_energy_predictor(o_en, x_mask) | |
o_en = o_en + o_energy_emb | |
# decoder pass | |
o_de, attn = self._forward_decoder(o_en, o_dr, x_mask, y_lengths, g=None) | |
outputs = { | |
"model_outputs": o_de, | |
"alignments": attn, | |
"pitch": o_pitch, | |
"energy": o_energy, | |
"durations_log": o_dr_log, | |
} | |
return outputs | |
def train_step(self, batch: dict, criterion: nn.Module): | |
text_input = batch["text_input"] | |
text_lengths = batch["text_lengths"] | |
mel_input = batch["mel_input"] | |
mel_lengths = batch["mel_lengths"] | |
pitch = batch["pitch"] if self.args.use_pitch else None | |
energy = batch["energy"] if self.args.use_energy else None | |
d_vectors = batch["d_vectors"] | |
speaker_ids = batch["speaker_ids"] | |
durations = batch["durations"] | |
aux_input = {"d_vectors": d_vectors, "speaker_ids": speaker_ids} | |
# forward pass | |
outputs = self.forward( | |
text_input, | |
text_lengths, | |
mel_lengths, | |
y=mel_input, | |
dr=durations, | |
pitch=pitch, | |
energy=energy, | |
aux_input=aux_input, | |
) | |
# use aligner's output as the duration target | |
if self.use_aligner: | |
durations = outputs["o_alignment_dur"] | |
# use float32 in AMP | |
with autocast(enabled=False): | |
# compute loss | |
loss_dict = criterion( | |
decoder_output=outputs["model_outputs"], | |
decoder_target=mel_input, | |
decoder_output_lens=mel_lengths, | |
dur_output=outputs["durations_log"], | |
dur_target=durations, | |
pitch_output=outputs["pitch_avg"] if self.use_pitch else None, | |
pitch_target=outputs["pitch_avg_gt"] if self.use_pitch else None, | |
energy_output=outputs["energy_avg"] if self.use_energy else None, | |
energy_target=outputs["energy_avg_gt"] if self.use_energy else None, | |
input_lens=text_lengths, | |
alignment_logprob=outputs["alignment_logprob"] if self.use_aligner else None, | |
alignment_soft=outputs["alignment_soft"], | |
alignment_hard=outputs["alignment_mas"], | |
binary_loss_weight=self.binary_loss_weight, | |
) | |
# compute duration error | |
durations_pred = outputs["durations"] | |
duration_error = torch.abs(durations - durations_pred).sum() / text_lengths.sum() | |
loss_dict["duration_error"] = duration_error | |
return outputs, loss_dict | |
def _create_logs(self, batch, outputs, ap): | |
"""Create common logger outputs.""" | |
model_outputs = outputs["model_outputs"] | |
alignments = outputs["alignments"] | |
mel_input = batch["mel_input"] | |
pred_spec = model_outputs[0].data.cpu().numpy() | |
gt_spec = mel_input[0].data.cpu().numpy() | |
align_img = alignments[0].data.cpu().numpy() | |
figures = { | |
"prediction": plot_spectrogram(pred_spec, ap, output_fig=False), | |
"ground_truth": plot_spectrogram(gt_spec, ap, output_fig=False), | |
"alignment": plot_alignment(align_img, output_fig=False), | |
} | |
# plot pitch figures | |
if self.args.use_pitch: | |
pitch_avg = abs(outputs["pitch_avg_gt"][0, 0].data.cpu().numpy()) | |
pitch_avg_hat = abs(outputs["pitch_avg"][0, 0].data.cpu().numpy()) | |
chars = self.tokenizer.decode(batch["text_input"][0].data.cpu().numpy()) | |
pitch_figures = { | |
"pitch_ground_truth": plot_avg_pitch(pitch_avg, chars, output_fig=False), | |
"pitch_avg_predicted": plot_avg_pitch(pitch_avg_hat, chars, output_fig=False), | |
} | |
figures.update(pitch_figures) | |
# plot energy figures | |
if self.args.use_energy: | |
energy_avg = abs(outputs["energy_avg_gt"][0, 0].data.cpu().numpy()) | |
energy_avg_hat = abs(outputs["energy_avg"][0, 0].data.cpu().numpy()) | |
chars = self.tokenizer.decode(batch["text_input"][0].data.cpu().numpy()) | |
energy_figures = { | |
"energy_ground_truth": plot_avg_energy(energy_avg, chars, output_fig=False), | |
"energy_avg_predicted": plot_avg_energy(energy_avg_hat, chars, output_fig=False), | |
} | |
figures.update(energy_figures) | |
# plot the attention mask computed from the predicted durations | |
if "attn_durations" in outputs: | |
alignments_hat = outputs["attn_durations"][0].data.cpu().numpy() | |
figures["alignment_hat"] = plot_alignment(alignments_hat.T, output_fig=False) | |
# Sample audio | |
train_audio = ap.inv_melspectrogram(pred_spec.T) | |
return figures, {"audio": train_audio} | |
def train_log( | |
self, batch: dict, outputs: dict, logger: "Logger", assets: dict, steps: int | |
) -> None: # pylint: disable=no-self-use | |
figures, audios = self._create_logs(batch, outputs, self.ap) | |
logger.train_figures(steps, figures) | |
logger.train_audios(steps, audios, self.ap.sample_rate) | |
def eval_step(self, batch: dict, criterion: nn.Module): | |
return self.train_step(batch, criterion) | |
def eval_log(self, batch: dict, outputs: dict, logger: "Logger", assets: dict, steps: int) -> None: | |
figures, audios = self._create_logs(batch, outputs, self.ap) | |
logger.eval_figures(steps, figures) | |
logger.eval_audios(steps, audios, self.ap.sample_rate) | |
def load_checkpoint( | |
self, config, checkpoint_path, eval=False, cache=False | |
): # pylint: disable=unused-argument, redefined-builtin | |
state = load_fsspec(checkpoint_path, map_location=torch.device("cpu"), cache=cache) | |
self.load_state_dict(state["model"]) | |
if eval: | |
self.eval() | |
assert not self.training | |
def get_criterion(self): | |
from TTS.tts.layers.losses import ForwardTTSLoss # pylint: disable=import-outside-toplevel | |
return ForwardTTSLoss(self.config) | |
def on_train_step_start(self, trainer): | |
"""Schedule binary loss weight.""" | |
self.binary_loss_weight = min(trainer.epochs_done / self.config.binary_loss_warmup_epochs, 1.0) * 1.0 | |
def init_from_config(config: "ForwardTTSConfig", samples: Union[List[List], List[Dict]] = None): | |
"""Initiate model from config | |
Args: | |
config (ForwardTTSConfig): Model config. | |
samples (Union[List[List], List[Dict]]): Training samples to parse speaker ids for training. | |
Defaults to None. | |
""" | |
from TTS.utils.audio import AudioProcessor | |
ap = AudioProcessor.init_from_config(config) | |
tokenizer, new_config = TTSTokenizer.init_from_config(config) | |
speaker_manager = SpeakerManager.init_from_config(config, samples) | |
return ForwardTTS(new_config, ap, tokenizer, speaker_manager) | |