Spaces:
Sleeping
Sleeping
import bisect | |
import numpy as np | |
import torch | |
def _pad_data(x, length): | |
_pad = 0 | |
assert x.ndim == 1 | |
return np.pad(x, (0, length - x.shape[0]), mode="constant", constant_values=_pad) | |
def prepare_data(inputs): | |
max_len = max((len(x) for x in inputs)) | |
return np.stack([_pad_data(x, max_len) for x in inputs]) | |
def _pad_tensor(x, length): | |
_pad = 0.0 | |
assert x.ndim == 2 | |
x = np.pad(x, [[0, 0], [0, length - x.shape[1]]], mode="constant", constant_values=_pad) | |
return x | |
def prepare_tensor(inputs, out_steps): | |
max_len = max((x.shape[1] for x in inputs)) | |
remainder = max_len % out_steps | |
pad_len = max_len + (out_steps - remainder) if remainder > 0 else max_len | |
return np.stack([_pad_tensor(x, pad_len) for x in inputs]) | |
def _pad_stop_target(x: np.ndarray, length: int, pad_val=1) -> np.ndarray: | |
"""Pad stop target array. | |
Args: | |
x (np.ndarray): Stop target array. | |
length (int): Length after padding. | |
pad_val (int, optional): Padding value. Defaults to 1. | |
Returns: | |
np.ndarray: Padded stop target array. | |
""" | |
assert x.ndim == 1 | |
return np.pad(x, (0, length - x.shape[0]), mode="constant", constant_values=pad_val) | |
def prepare_stop_target(inputs, out_steps): | |
"""Pad row vectors with 1.""" | |
max_len = max((x.shape[0] for x in inputs)) | |
remainder = max_len % out_steps | |
pad_len = max_len + (out_steps - remainder) if remainder > 0 else max_len | |
return np.stack([_pad_stop_target(x, pad_len) for x in inputs]) | |
def pad_per_step(inputs, pad_len): | |
return np.pad(inputs, [[0, 0], [0, 0], [0, pad_len]], mode="constant", constant_values=0.0) | |
def get_length_balancer_weights(items: list, num_buckets=10): | |
# get all durations | |
audio_lengths = np.array([item["audio_length"] for item in items]) | |
# create the $num_buckets buckets classes based in the dataset max and min length | |
max_length = int(max(audio_lengths)) | |
min_length = int(min(audio_lengths)) | |
step = int((max_length - min_length) / num_buckets) + 1 | |
buckets_classes = [i + step for i in range(min_length, (max_length - step) + num_buckets + 1, step)] | |
# add each sample in their respective length bucket | |
buckets_names = np.array( | |
[buckets_classes[bisect.bisect_left(buckets_classes, item["audio_length"])] for item in items] | |
) | |
# count and compute the weights_bucket for each sample | |
unique_buckets_names = np.unique(buckets_names).tolist() | |
bucket_ids = [unique_buckets_names.index(l) for l in buckets_names] | |
bucket_count = np.array([len(np.where(buckets_names == l)[0]) for l in unique_buckets_names]) | |
weight_bucket = 1.0 / bucket_count | |
dataset_samples_weight = np.array([weight_bucket[l] for l in bucket_ids]) | |
# normalize | |
dataset_samples_weight = dataset_samples_weight / np.linalg.norm(dataset_samples_weight) | |
return torch.from_numpy(dataset_samples_weight).float() | |