Spaces:
Sleeping
Sleeping
import re | |
import bangla | |
from bnnumerizer import numerize | |
from bnunicodenormalizer import Normalizer | |
# initialize | |
bnorm = Normalizer() | |
attribution_dict = { | |
"সাঃ": "সাল্লাল্লাহু আলাইহি ওয়া সাল্লাম", | |
"আঃ": "আলাইহিস সালাম", | |
"রাঃ": "রাদিআল্লাহু আনহু", | |
"রহঃ": "রহমাতুল্লাহি আলাইহি", | |
"রহিঃ": "রহিমাহুল্লাহ", | |
"হাফিঃ": "হাফিযাহুল্লাহ", | |
"বায়ান": "বাইআন", | |
"দাঃবাঃ": "দামাত বারাকাতুহুম,দামাত বারাকাতুল্লাহ", | |
# "আয়াত" : "আইআত",#আইআত | |
# "ওয়া" : "ওআ", | |
# "ওয়াসাল্লাম" : "ওআসাল্লাম", | |
# "কেন" : "কেনো", | |
# "কোন" : "কোনো", | |
# "বল" : "বলো", | |
# "চল" : "চলো", | |
# "কর" : "করো", | |
# "রাখ" : "রাখো", | |
"’": "", | |
"‘": "", | |
# "য়" : "অ", | |
# "সম্প্রদায়" : "সম্প্রদাই", | |
# "রয়েছে" : "রইছে", | |
# "রয়েছ" : "রইছ", | |
"/": " বাই ", | |
} | |
def tag_text(text: str): | |
# remove multiple spaces | |
text = re.sub(" +", " ", text) | |
# create start and end | |
text = "start" + text + "end" | |
# tag text | |
parts = re.split("[\u0600-\u06FF]+", text) | |
# remove non chars | |
parts = [p for p in parts if p.strip()] | |
# unique parts | |
parts = set(parts) | |
# tag the text | |
for m in parts: | |
if len(m.strip()) > 1: | |
text = text.replace(m, f"{m}") | |
# clean-tags | |
text = text.replace("start", "") | |
text = text.replace("end", "") | |
return text | |
def normalize(sen): | |
global bnorm # pylint: disable=global-statement | |
_words = [bnorm(word)["normalized"] for word in sen.split()] | |
return " ".join([word for word in _words if word is not None]) | |
def expand_full_attribution(text): | |
for word, attr in attribution_dict.items(): | |
if word in text: | |
text = text.replace(word, normalize(attr)) | |
return text | |
def collapse_whitespace(text): | |
# Regular expression matching whitespace: | |
_whitespace_re = re.compile(r"\s+") | |
return re.sub(_whitespace_re, " ", text) | |
def bangla_text_to_phonemes(text: str) -> str: | |
# english numbers to bangla conversion | |
res = re.search("[0-9]", text) | |
if res is not None: | |
text = bangla.convert_english_digit_to_bangla_digit(text) | |
# replace ':' in between two bangla numbers with ' এর ' | |
pattern = r"[০, ১, ২, ৩, ৪, ৫, ৬, ৭, ৮, ৯]:[০, ১, ২, ৩, ৪, ৫, ৬, ৭, ৮, ৯]" | |
matches = re.findall(pattern, text) | |
for m in matches: | |
r = m.replace(":", " এর ") | |
text = text.replace(m, r) | |
# numerize text | |
text = numerize(text) | |
# tag sections | |
text = tag_text(text) | |
# text blocks | |
# blocks = text.split("") | |
# blocks = [b for b in blocks if b.strip()] | |
# create tuple of (lang,text) | |
if "" in text: | |
text = text.replace("", "").replace("", "") | |
# Split based on sentence ending Characters | |
bn_text = text.strip() | |
sentenceEnders = re.compile("[।!?]") | |
sentences = sentenceEnders.split(str(bn_text)) | |
data = "" | |
for sent in sentences: | |
res = re.sub("\n", "", sent) | |
res = normalize(res) | |
# expand attributes | |
res = expand_full_attribution(res) | |
res = collapse_whitespace(res) | |
res += "।" | |
data += res | |
return data | |