Spaces:
Sleeping
Sleeping
import os | |
import random | |
from typing import Dict, List, Tuple, Union | |
import torch | |
import torch.distributed as dist | |
from coqpit import Coqpit | |
from torch import nn | |
from torch.utils.data import DataLoader | |
from torch.utils.data.sampler import WeightedRandomSampler | |
from trainer.torch import DistributedSampler, DistributedSamplerWrapper | |
from TTS.model import BaseTrainerModel | |
from TTS.tts.datasets.dataset import TTSDataset | |
from TTS.tts.utils.data import get_length_balancer_weights | |
from TTS.tts.utils.languages import LanguageManager, get_language_balancer_weights | |
from TTS.tts.utils.speakers import SpeakerManager, get_speaker_balancer_weights | |
from TTS.tts.utils.synthesis import synthesis | |
from TTS.tts.utils.visual import plot_alignment, plot_spectrogram | |
# pylint: skip-file | |
class BaseVC(BaseTrainerModel): | |
"""Base `vc` class. Every new `vc` model must inherit this. | |
It defines common `vc` specific functions on top of `Model` implementation. | |
""" | |
MODEL_TYPE = "vc" | |
def __init__( | |
self, | |
config: Coqpit, | |
ap: "AudioProcessor", | |
speaker_manager: SpeakerManager = None, | |
language_manager: LanguageManager = None, | |
): | |
super().__init__() | |
self.config = config | |
self.ap = ap | |
self.speaker_manager = speaker_manager | |
self.language_manager = language_manager | |
self._set_model_args(config) | |
def _set_model_args(self, config: Coqpit): | |
"""Setup model args based on the config type (`ModelConfig` or `ModelArgs`). | |
`ModelArgs` has all the fields reuqired to initialize the model architecture. | |
`ModelConfig` has all the fields required for training, inference and containes `ModelArgs`. | |
If the config is for training with a name like "*Config", then the model args are embeded in the | |
config.model_args | |
If the config is for the model with a name like "*Args", then we assign the directly. | |
""" | |
# don't use isintance not to import recursively | |
if "Config" in config.__class__.__name__: | |
self.config = config | |
self.args = config.model_args | |
elif "Args" in config.__class__.__name__: | |
self.args = config | |
else: | |
raise ValueError("config must be either a *Config or *Args") | |
def init_multispeaker(self, config: Coqpit, data: List = None): | |
"""Initialize a speaker embedding layer if needen and define expected embedding channel size for defining | |
`in_channels` size of the connected layers. | |
This implementation yields 3 possible outcomes: | |
1. If `config.use_speaker_embedding` and `config.use_d_vector_file are False, do nothing. | |
2. If `config.use_d_vector_file` is True, set expected embedding channel size to `config.d_vector_dim` or 512. | |
3. If `config.use_speaker_embedding`, initialize a speaker embedding layer with channel size of | |
`config.d_vector_dim` or 512. | |
You can override this function for new models. | |
Args: | |
config (Coqpit): Model configuration. | |
""" | |
# set number of speakers | |
if self.speaker_manager is not None: | |
self.num_speakers = self.speaker_manager.num_speakers | |
elif hasattr(config, "num_speakers"): | |
self.num_speakers = config.num_speakers | |
# set ultimate speaker embedding size | |
if config.use_speaker_embedding or config.use_d_vector_file: | |
self.embedded_speaker_dim = ( | |
config.d_vector_dim if "d_vector_dim" in config and config.d_vector_dim is not None else 512 | |
) | |
# init speaker embedding layer | |
if config.use_speaker_embedding and not config.use_d_vector_file: | |
print(" > Init speaker_embedding layer.") | |
self.speaker_embedding = nn.Embedding(self.num_speakers, self.embedded_speaker_dim) | |
self.speaker_embedding.weight.data.normal_(0, 0.3) | |
def get_aux_input(self, **kwargs) -> Dict: | |
"""Prepare and return `aux_input` used by `forward()`""" | |
return {"speaker_id": None, "style_wav": None, "d_vector": None, "language_id": None} | |
def get_aux_input_from_test_sentences(self, sentence_info): | |
if hasattr(self.config, "model_args"): | |
config = self.config.model_args | |
else: | |
config = self.config | |
# extract speaker and language info | |
text, speaker_name, style_wav, language_name = None, None, None, None | |
if isinstance(sentence_info, list): | |
if len(sentence_info) == 1: | |
text = sentence_info[0] | |
elif len(sentence_info) == 2: | |
text, speaker_name = sentence_info | |
elif len(sentence_info) == 3: | |
text, speaker_name, style_wav = sentence_info | |
elif len(sentence_info) == 4: | |
text, speaker_name, style_wav, language_name = sentence_info | |
else: | |
text = sentence_info | |
# get speaker id/d_vector | |
speaker_id, d_vector, language_id = None, None, None | |
if self.speaker_manager is not None: | |
if config.use_d_vector_file: | |
if speaker_name is None: | |
d_vector = self.speaker_manager.get_random_embedding() | |
else: | |
d_vector = self.speaker_manager.get_d_vector_by_name(speaker_name) | |
elif config.use_speaker_embedding: | |
if speaker_name is None: | |
speaker_id = self.speaker_manager.get_random_id() | |
else: | |
speaker_id = self.speaker_manager.name_to_id[speaker_name] | |
# get language id | |
if self.language_manager is not None and config.use_language_embedding and language_name is not None: | |
language_id = self.language_manager.name_to_id[language_name] | |
return { | |
"text": text, | |
"speaker_id": speaker_id, | |
"style_wav": style_wav, | |
"d_vector": d_vector, | |
"language_id": language_id, | |
} | |
def format_batch(self, batch: Dict) -> Dict: | |
"""Generic batch formatting for `VCDataset`. | |
You must override this if you use a custom dataset. | |
Args: | |
batch (Dict): [description] | |
Returns: | |
Dict: [description] | |
""" | |
# setup input batch | |
text_input = batch["token_id"] | |
text_lengths = batch["token_id_lengths"] | |
speaker_names = batch["speaker_names"] | |
linear_input = batch["linear"] | |
mel_input = batch["mel"] | |
mel_lengths = batch["mel_lengths"] | |
stop_targets = batch["stop_targets"] | |
item_idx = batch["item_idxs"] | |
d_vectors = batch["d_vectors"] | |
speaker_ids = batch["speaker_ids"] | |
attn_mask = batch["attns"] | |
waveform = batch["waveform"] | |
pitch = batch["pitch"] | |
energy = batch["energy"] | |
language_ids = batch["language_ids"] | |
max_text_length = torch.max(text_lengths.float()) | |
max_spec_length = torch.max(mel_lengths.float()) | |
# compute durations from attention masks | |
durations = None | |
if attn_mask is not None: | |
durations = torch.zeros(attn_mask.shape[0], attn_mask.shape[2]) | |
for idx, am in enumerate(attn_mask): | |
# compute raw durations | |
c_idxs = am[:, : text_lengths[idx], : mel_lengths[idx]].max(1)[1] | |
# c_idxs, counts = torch.unique_consecutive(c_idxs, return_counts=True) | |
c_idxs, counts = torch.unique(c_idxs, return_counts=True) | |
dur = torch.ones([text_lengths[idx]]).to(counts.dtype) | |
dur[c_idxs] = counts | |
# smooth the durations and set any 0 duration to 1 | |
# by cutting off from the largest duration indeces. | |
extra_frames = dur.sum() - mel_lengths[idx] | |
largest_idxs = torch.argsort(-dur)[:extra_frames] | |
dur[largest_idxs] -= 1 | |
assert ( | |
dur.sum() == mel_lengths[idx] | |
), f" [!] total duration {dur.sum()} vs spectrogram length {mel_lengths[idx]}" | |
durations[idx, : text_lengths[idx]] = dur | |
# set stop targets wrt reduction factor | |
stop_targets = stop_targets.view(text_input.shape[0], stop_targets.size(1) // self.config.r, -1) | |
stop_targets = (stop_targets.sum(2) > 0.0).unsqueeze(2).float().squeeze(2) | |
stop_target_lengths = torch.divide(mel_lengths, self.config.r).ceil_() | |
return { | |
"text_input": text_input, | |
"text_lengths": text_lengths, | |
"speaker_names": speaker_names, | |
"mel_input": mel_input, | |
"mel_lengths": mel_lengths, | |
"linear_input": linear_input, | |
"stop_targets": stop_targets, | |
"stop_target_lengths": stop_target_lengths, | |
"attn_mask": attn_mask, | |
"durations": durations, | |
"speaker_ids": speaker_ids, | |
"d_vectors": d_vectors, | |
"max_text_length": float(max_text_length), | |
"max_spec_length": float(max_spec_length), | |
"item_idx": item_idx, | |
"waveform": waveform, | |
"pitch": pitch, | |
"energy": energy, | |
"language_ids": language_ids, | |
"audio_unique_names": batch["audio_unique_names"], | |
} | |
def get_sampler(self, config: Coqpit, dataset: TTSDataset, num_gpus=1): | |
weights = None | |
data_items = dataset.samples | |
if getattr(config, "use_language_weighted_sampler", False): | |
alpha = getattr(config, "language_weighted_sampler_alpha", 1.0) | |
print(" > Using Language weighted sampler with alpha:", alpha) | |
weights = get_language_balancer_weights(data_items) * alpha | |
if getattr(config, "use_speaker_weighted_sampler", False): | |
alpha = getattr(config, "speaker_weighted_sampler_alpha", 1.0) | |
print(" > Using Speaker weighted sampler with alpha:", alpha) | |
if weights is not None: | |
weights += get_speaker_balancer_weights(data_items) * alpha | |
else: | |
weights = get_speaker_balancer_weights(data_items) * alpha | |
if getattr(config, "use_length_weighted_sampler", False): | |
alpha = getattr(config, "length_weighted_sampler_alpha", 1.0) | |
print(" > Using Length weighted sampler with alpha:", alpha) | |
if weights is not None: | |
weights += get_length_balancer_weights(data_items) * alpha | |
else: | |
weights = get_length_balancer_weights(data_items) * alpha | |
if weights is not None: | |
sampler = WeightedRandomSampler(weights, len(weights)) | |
else: | |
sampler = None | |
# sampler for DDP | |
if sampler is None: | |
sampler = DistributedSampler(dataset) if num_gpus > 1 else None | |
else: # If a sampler is already defined use this sampler and DDP sampler together | |
sampler = DistributedSamplerWrapper(sampler) if num_gpus > 1 else sampler | |
return sampler | |
def get_data_loader( | |
self, | |
config: Coqpit, | |
assets: Dict, | |
is_eval: bool, | |
samples: Union[List[Dict], List[List]], | |
verbose: bool, | |
num_gpus: int, | |
rank: int = None, | |
) -> "DataLoader": | |
if is_eval and not config.run_eval: | |
loader = None | |
else: | |
# setup multi-speaker attributes | |
if self.speaker_manager is not None: | |
if hasattr(config, "model_args"): | |
speaker_id_mapping = ( | |
self.speaker_manager.name_to_id if config.model_args.use_speaker_embedding else None | |
) | |
d_vector_mapping = self.speaker_manager.embeddings if config.model_args.use_d_vector_file else None | |
config.use_d_vector_file = config.model_args.use_d_vector_file | |
else: | |
speaker_id_mapping = self.speaker_manager.name_to_id if config.use_speaker_embedding else None | |
d_vector_mapping = self.speaker_manager.embeddings if config.use_d_vector_file else None | |
else: | |
speaker_id_mapping = None | |
d_vector_mapping = None | |
# setup multi-lingual attributes | |
if self.language_manager is not None: | |
language_id_mapping = self.language_manager.name_to_id if self.args.use_language_embedding else None | |
else: | |
language_id_mapping = None | |
# init dataloader | |
dataset = TTSDataset( | |
outputs_per_step=config.r if "r" in config else 1, | |
compute_linear_spec=config.model.lower() == "tacotron" or config.compute_linear_spec, | |
compute_f0=config.get("compute_f0", False), | |
f0_cache_path=config.get("f0_cache_path", None), | |
compute_energy=config.get("compute_energy", False), | |
energy_cache_path=config.get("energy_cache_path", None), | |
samples=samples, | |
ap=self.ap, | |
return_wav=config.return_wav if "return_wav" in config else False, | |
batch_group_size=0 if is_eval else config.batch_group_size * config.batch_size, | |
min_text_len=config.min_text_len, | |
max_text_len=config.max_text_len, | |
min_audio_len=config.min_audio_len, | |
max_audio_len=config.max_audio_len, | |
phoneme_cache_path=config.phoneme_cache_path, | |
precompute_num_workers=config.precompute_num_workers, | |
use_noise_augment=False if is_eval else config.use_noise_augment, | |
verbose=verbose, | |
speaker_id_mapping=speaker_id_mapping, | |
d_vector_mapping=d_vector_mapping if config.use_d_vector_file else None, | |
tokenizer=None, | |
start_by_longest=config.start_by_longest, | |
language_id_mapping=language_id_mapping, | |
) | |
# wait all the DDP process to be ready | |
if num_gpus > 1: | |
dist.barrier() | |
# sort input sequences from short to long | |
dataset.preprocess_samples() | |
# get samplers | |
sampler = self.get_sampler(config, dataset, num_gpus) | |
loader = DataLoader( | |
dataset, | |
batch_size=config.eval_batch_size if is_eval else config.batch_size, | |
shuffle=config.shuffle if sampler is None else False, # if there is no other sampler | |
collate_fn=dataset.collate_fn, | |
drop_last=config.drop_last, # setting this False might cause issues in AMP training. | |
sampler=sampler, | |
num_workers=config.num_eval_loader_workers if is_eval else config.num_loader_workers, | |
pin_memory=False, | |
) | |
return loader | |
def _get_test_aux_input( | |
self, | |
) -> Dict: | |
d_vector = None | |
if self.config.use_d_vector_file: | |
d_vector = [self.speaker_manager.embeddings[name]["embedding"] for name in self.speaker_manager.embeddings] | |
d_vector = (random.sample(sorted(d_vector), 1),) | |
aux_inputs = { | |
"speaker_id": None | |
if not self.config.use_speaker_embedding | |
else random.sample(sorted(self.speaker_manager.name_to_id.values()), 1), | |
"d_vector": d_vector, | |
"style_wav": None, # TODO: handle GST style input | |
} | |
return aux_inputs | |
def test_run(self, assets: Dict) -> Tuple[Dict, Dict]: | |
"""Generic test run for `vc` models used by `Trainer`. | |
You can override this for a different behaviour. | |
Args: | |
assets (dict): A dict of training assets. For `vc` models, it must include `{'audio_processor': ap}`. | |
Returns: | |
Tuple[Dict, Dict]: Test figures and audios to be projected to Tensorboard. | |
""" | |
print(" | > Synthesizing test sentences.") | |
test_audios = {} | |
test_figures = {} | |
test_sentences = self.config.test_sentences | |
aux_inputs = self._get_test_aux_input() | |
for idx, sen in enumerate(test_sentences): | |
if isinstance(sen, list): | |
aux_inputs = self.get_aux_input_from_test_sentences(sen) | |
sen = aux_inputs["text"] | |
outputs_dict = synthesis( | |
self, | |
sen, | |
self.config, | |
"cuda" in str(next(self.parameters()).device), | |
speaker_id=aux_inputs["speaker_id"], | |
d_vector=aux_inputs["d_vector"], | |
style_wav=aux_inputs["style_wav"], | |
use_griffin_lim=True, | |
do_trim_silence=False, | |
) | |
test_audios["{}-audio".format(idx)] = outputs_dict["wav"] | |
test_figures["{}-prediction".format(idx)] = plot_spectrogram( | |
outputs_dict["outputs"]["model_outputs"], self.ap, output_fig=False | |
) | |
test_figures["{}-alignment".format(idx)] = plot_alignment( | |
outputs_dict["outputs"]["alignments"], output_fig=False | |
) | |
return test_figures, test_audios | |
def on_init_start(self, trainer): | |
"""Save the speaker.pth and language_ids.json at the beginning of the training. Also update both paths.""" | |
if self.speaker_manager is not None: | |
output_path = os.path.join(trainer.output_path, "speakers.pth") | |
self.speaker_manager.save_ids_to_file(output_path) | |
trainer.config.speakers_file = output_path | |
# some models don't have `model_args` set | |
if hasattr(trainer.config, "model_args"): | |
trainer.config.model_args.speakers_file = output_path | |
trainer.config.save_json(os.path.join(trainer.output_path, "config.json")) | |
print(f" > `speakers.pth` is saved to {output_path}.") | |
print(" > `speakers_file` is updated in the config.json.") | |
if self.language_manager is not None: | |
output_path = os.path.join(trainer.output_path, "language_ids.json") | |
self.language_manager.save_ids_to_file(output_path) | |
trainer.config.language_ids_file = output_path | |
if hasattr(trainer.config, "model_args"): | |
trainer.config.model_args.language_ids_file = output_path | |
trainer.config.save_json(os.path.join(trainer.output_path, "config.json")) | |
print(f" > `language_ids.json` is saved to {output_path}.") | |
print(" > `language_ids_file` is updated in the config.json.") | |