Spaces:
Sleeping
Sleeping
from typing import List | |
from coqpit import Coqpit | |
from torch.utils.data import Dataset | |
from TTS.utils.audio import AudioProcessor | |
from TTS.vocoder.datasets.gan_dataset import GANDataset | |
from TTS.vocoder.datasets.preprocess import load_wav_data, load_wav_feat_data | |
from TTS.vocoder.datasets.wavegrad_dataset import WaveGradDataset | |
from TTS.vocoder.datasets.wavernn_dataset import WaveRNNDataset | |
def setup_dataset(config: Coqpit, ap: AudioProcessor, is_eval: bool, data_items: List, verbose: bool) -> Dataset: | |
if config.model.lower() in "gan": | |
dataset = GANDataset( | |
ap=ap, | |
items=data_items, | |
seq_len=config.seq_len, | |
hop_len=ap.hop_length, | |
pad_short=config.pad_short, | |
conv_pad=config.conv_pad, | |
return_pairs=config.diff_samples_for_G_and_D if "diff_samples_for_G_and_D" in config else False, | |
is_training=not is_eval, | |
return_segments=not is_eval, | |
use_noise_augment=config.use_noise_augment, | |
use_cache=config.use_cache, | |
verbose=verbose, | |
) | |
dataset.shuffle_mapping() | |
elif config.model.lower() == "wavegrad": | |
dataset = WaveGradDataset( | |
ap=ap, | |
items=data_items, | |
seq_len=config.seq_len, | |
hop_len=ap.hop_length, | |
pad_short=config.pad_short, | |
conv_pad=config.conv_pad, | |
is_training=not is_eval, | |
return_segments=True, | |
use_noise_augment=False, | |
use_cache=config.use_cache, | |
verbose=verbose, | |
) | |
elif config.model.lower() == "wavernn": | |
dataset = WaveRNNDataset( | |
ap=ap, | |
items=data_items, | |
seq_len=config.seq_len, | |
hop_len=ap.hop_length, | |
pad=config.model_params.pad, | |
mode=config.model_params.mode, | |
mulaw=config.model_params.mulaw, | |
is_training=not is_eval, | |
verbose=verbose, | |
) | |
else: | |
raise ValueError(f" [!] Dataset for model {config.model.lower()} cannot be found.") | |
return dataset | |