Spaces:
Sleeping
Sleeping
from torch import nn | |
from torch.nn.utils.parametrize import remove_parametrizations | |
# pylint: disable=dangerous-default-value | |
class ResStack(nn.Module): | |
def __init__(self, kernel, channel, padding, dilations=[1, 3, 5]): | |
super().__init__() | |
resstack = [] | |
for dilation in dilations: | |
resstack += [ | |
nn.LeakyReLU(0.2), | |
nn.ReflectionPad1d(dilation), | |
nn.utils.parametrizations.weight_norm( | |
nn.Conv1d(channel, channel, kernel_size=kernel, dilation=dilation) | |
), | |
nn.LeakyReLU(0.2), | |
nn.ReflectionPad1d(padding), | |
nn.utils.parametrizations.weight_norm(nn.Conv1d(channel, channel, kernel_size=1)), | |
] | |
self.resstack = nn.Sequential(*resstack) | |
self.shortcut = nn.utils.parametrizations.weight_norm(nn.Conv1d(channel, channel, kernel_size=1)) | |
def forward(self, x): | |
x1 = self.shortcut(x) | |
x2 = self.resstack(x) | |
return x1 + x2 | |
def remove_weight_norm(self): | |
remove_parametrizations(self.shortcut, "weight") | |
remove_parametrizations(self.resstack[2], "weight") | |
remove_parametrizations(self.resstack[5], "weight") | |
remove_parametrizations(self.resstack[8], "weight") | |
remove_parametrizations(self.resstack[11], "weight") | |
remove_parametrizations(self.resstack[14], "weight") | |
remove_parametrizations(self.resstack[17], "weight") | |
class MRF(nn.Module): | |
def __init__(self, kernels, channel, dilations=[1, 3, 5]): # # pylint: disable=dangerous-default-value | |
super().__init__() | |
self.resblock1 = ResStack(kernels[0], channel, 0, dilations) | |
self.resblock2 = ResStack(kernels[1], channel, 6, dilations) | |
self.resblock3 = ResStack(kernels[2], channel, 12, dilations) | |
def forward(self, x): | |
x1 = self.resblock1(x) | |
x2 = self.resblock2(x) | |
x3 = self.resblock3(x) | |
return x1 + x2 + x3 | |
def remove_weight_norm(self): | |
self.resblock1.remove_weight_norm() | |
self.resblock2.remove_weight_norm() | |
self.resblock3.remove_weight_norm() | |