Spaces:
Sleeping
Sleeping
from torch import nn | |
from torch.nn.utils.parametrizations import weight_norm | |
from torch.nn.utils.parametrize import remove_parametrizations | |
class ResidualStack(nn.Module): | |
def __init__(self, channels, num_res_blocks, kernel_size): | |
super().__init__() | |
assert (kernel_size - 1) % 2 == 0, " [!] kernel_size has to be odd." | |
base_padding = (kernel_size - 1) // 2 | |
self.blocks = nn.ModuleList() | |
for idx in range(num_res_blocks): | |
layer_kernel_size = kernel_size | |
layer_dilation = layer_kernel_size**idx | |
layer_padding = base_padding * layer_dilation | |
self.blocks += [ | |
nn.Sequential( | |
nn.LeakyReLU(0.2), | |
nn.ReflectionPad1d(layer_padding), | |
weight_norm( | |
nn.Conv1d(channels, channels, kernel_size=kernel_size, dilation=layer_dilation, bias=True) | |
), | |
nn.LeakyReLU(0.2), | |
weight_norm(nn.Conv1d(channels, channels, kernel_size=1, bias=True)), | |
) | |
] | |
self.shortcuts = nn.ModuleList( | |
[weight_norm(nn.Conv1d(channels, channels, kernel_size=1, bias=True)) for _ in range(num_res_blocks)] | |
) | |
def forward(self, x): | |
for block, shortcut in zip(self.blocks, self.shortcuts): | |
x = shortcut(x) + block(x) | |
return x | |
def remove_weight_norm(self): | |
for block, shortcut in zip(self.blocks, self.shortcuts): | |
remove_parametrizations(block[2], "weight") | |
remove_parametrizations(block[4], "weight") | |
remove_parametrizations(shortcut, "weight") | |