Spaces:
Sleeping
Sleeping
import sys | |
import time | |
from dataclasses import dataclass, field | |
from typing import Dict, List, Tuple | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
from coqpit import Coqpit | |
from torch import nn | |
from torch.utils.data import DataLoader | |
from torch.utils.data.distributed import DistributedSampler | |
from TTS.tts.utils.visual import plot_spectrogram | |
from TTS.utils.audio import AudioProcessor | |
from TTS.utils.audio.numpy_transforms import mulaw_decode | |
from TTS.utils.io import load_fsspec | |
from TTS.vocoder.datasets.wavernn_dataset import WaveRNNDataset | |
from TTS.vocoder.layers.losses import WaveRNNLoss | |
from TTS.vocoder.models.base_vocoder import BaseVocoder | |
from TTS.vocoder.utils.distribution import sample_from_discretized_mix_logistic, sample_from_gaussian | |
def stream(string, variables): | |
sys.stdout.write(f"\r{string}" % variables) | |
# pylint: disable=abstract-method | |
# relates https://github.com/pytorch/pytorch/issues/42305 | |
class ResBlock(nn.Module): | |
def __init__(self, dims): | |
super().__init__() | |
self.conv1 = nn.Conv1d(dims, dims, kernel_size=1, bias=False) | |
self.conv2 = nn.Conv1d(dims, dims, kernel_size=1, bias=False) | |
self.batch_norm1 = nn.BatchNorm1d(dims) | |
self.batch_norm2 = nn.BatchNorm1d(dims) | |
def forward(self, x): | |
residual = x | |
x = self.conv1(x) | |
x = self.batch_norm1(x) | |
x = F.relu(x) | |
x = self.conv2(x) | |
x = self.batch_norm2(x) | |
return x + residual | |
class MelResNet(nn.Module): | |
def __init__(self, num_res_blocks, in_dims, compute_dims, res_out_dims, pad): | |
super().__init__() | |
k_size = pad * 2 + 1 | |
self.conv_in = nn.Conv1d(in_dims, compute_dims, kernel_size=k_size, bias=False) | |
self.batch_norm = nn.BatchNorm1d(compute_dims) | |
self.layers = nn.ModuleList() | |
for _ in range(num_res_blocks): | |
self.layers.append(ResBlock(compute_dims)) | |
self.conv_out = nn.Conv1d(compute_dims, res_out_dims, kernel_size=1) | |
def forward(self, x): | |
x = self.conv_in(x) | |
x = self.batch_norm(x) | |
x = F.relu(x) | |
for f in self.layers: | |
x = f(x) | |
x = self.conv_out(x) | |
return x | |
class Stretch2d(nn.Module): | |
def __init__(self, x_scale, y_scale): | |
super().__init__() | |
self.x_scale = x_scale | |
self.y_scale = y_scale | |
def forward(self, x): | |
b, c, h, w = x.size() | |
x = x.unsqueeze(-1).unsqueeze(3) | |
x = x.repeat(1, 1, 1, self.y_scale, 1, self.x_scale) | |
return x.view(b, c, h * self.y_scale, w * self.x_scale) | |
class UpsampleNetwork(nn.Module): | |
def __init__( | |
self, | |
feat_dims, | |
upsample_scales, | |
compute_dims, | |
num_res_blocks, | |
res_out_dims, | |
pad, | |
use_aux_net, | |
): | |
super().__init__() | |
self.total_scale = np.cumproduct(upsample_scales)[-1] | |
self.indent = pad * self.total_scale | |
self.use_aux_net = use_aux_net | |
if use_aux_net: | |
self.resnet = MelResNet(num_res_blocks, feat_dims, compute_dims, res_out_dims, pad) | |
self.resnet_stretch = Stretch2d(self.total_scale, 1) | |
self.up_layers = nn.ModuleList() | |
for scale in upsample_scales: | |
k_size = (1, scale * 2 + 1) | |
padding = (0, scale) | |
stretch = Stretch2d(scale, 1) | |
conv = nn.Conv2d(1, 1, kernel_size=k_size, padding=padding, bias=False) | |
conv.weight.data.fill_(1.0 / k_size[1]) | |
self.up_layers.append(stretch) | |
self.up_layers.append(conv) | |
def forward(self, m): | |
if self.use_aux_net: | |
aux = self.resnet(m).unsqueeze(1) | |
aux = self.resnet_stretch(aux) | |
aux = aux.squeeze(1) | |
aux = aux.transpose(1, 2) | |
else: | |
aux = None | |
m = m.unsqueeze(1) | |
for f in self.up_layers: | |
m = f(m) | |
m = m.squeeze(1)[:, :, self.indent : -self.indent] | |
return m.transpose(1, 2), aux | |
class Upsample(nn.Module): | |
def __init__(self, scale, pad, num_res_blocks, feat_dims, compute_dims, res_out_dims, use_aux_net): | |
super().__init__() | |
self.scale = scale | |
self.pad = pad | |
self.indent = pad * scale | |
self.use_aux_net = use_aux_net | |
self.resnet = MelResNet(num_res_blocks, feat_dims, compute_dims, res_out_dims, pad) | |
def forward(self, m): | |
if self.use_aux_net: | |
aux = self.resnet(m) | |
aux = torch.nn.functional.interpolate(aux, scale_factor=self.scale, mode="linear", align_corners=True) | |
aux = aux.transpose(1, 2) | |
else: | |
aux = None | |
m = torch.nn.functional.interpolate(m, scale_factor=self.scale, mode="linear", align_corners=True) | |
m = m[:, :, self.indent : -self.indent] | |
m = m * 0.045 # empirically found | |
return m.transpose(1, 2), aux | |
class WavernnArgs(Coqpit): | |
"""🐸 WaveRNN model arguments. | |
rnn_dims (int): | |
Number of hidden channels in RNN layers. Defaults to 512. | |
fc_dims (int): | |
Number of hidden channels in fully-conntected layers. Defaults to 512. | |
compute_dims (int): | |
Number of hidden channels in the feature ResNet. Defaults to 128. | |
res_out_dim (int): | |
Number of hidden channels in the feature ResNet output. Defaults to 128. | |
num_res_blocks (int): | |
Number of residual blocks in the ResNet. Defaults to 10. | |
use_aux_net (bool): | |
enable/disable the feature ResNet. Defaults to True. | |
use_upsample_net (bool): | |
enable/ disable the upsampling networl. If False, basic upsampling is used. Defaults to True. | |
upsample_factors (list): | |
Upsampling factors. The multiply of the values must match the `hop_length`. Defaults to ```[4, 8, 8]```. | |
mode (str): | |
Output mode of the WaveRNN vocoder. `mold` for Mixture of Logistic Distribution, `gauss` for a single | |
Gaussian Distribution and `bits` for quantized bits as the model's output. | |
mulaw (bool): | |
enable / disable the use of Mulaw quantization for training. Only applicable if `mode == 'bits'`. Defaults | |
to `True`. | |
pad (int): | |
Padding applied to the input feature frames against the convolution layers of the feature network. | |
Defaults to 2. | |
""" | |
rnn_dims: int = 512 | |
fc_dims: int = 512 | |
compute_dims: int = 128 | |
res_out_dims: int = 128 | |
num_res_blocks: int = 10 | |
use_aux_net: bool = True | |
use_upsample_net: bool = True | |
upsample_factors: List[int] = field(default_factory=lambda: [4, 8, 8]) | |
mode: str = "mold" # mold [string], gauss [string], bits [int] | |
mulaw: bool = True # apply mulaw if mode is bits | |
pad: int = 2 | |
feat_dims: int = 80 | |
class Wavernn(BaseVocoder): | |
def __init__(self, config: Coqpit): | |
"""🐸 WaveRNN model. | |
Original paper - https://arxiv.org/abs/1802.08435 | |
Official implementation - https://github.com/fatchord/WaveRNN | |
Args: | |
config (Coqpit): [description] | |
Raises: | |
RuntimeError: [description] | |
Examples: | |
>>> from TTS.vocoder.configs import WavernnConfig | |
>>> config = WavernnConfig() | |
>>> model = Wavernn(config) | |
Paper Abstract: | |
Sequential models achieve state-of-the-art results in audio, visual and textual domains with respect to | |
both estimating the data distribution and generating high-quality samples. Efficient sampling for this | |
class of models has however remained an elusive problem. With a focus on text-to-speech synthesis, we | |
describe a set of general techniques for reducing sampling time while maintaining high output quality. | |
We first describe a single-layer recurrent neural network, the WaveRNN, with a dual softmax layer that | |
matches the quality of the state-of-the-art WaveNet model. The compact form of the network makes it | |
possible to generate 24kHz 16-bit audio 4x faster than real time on a GPU. Second, we apply a weight | |
pruning technique to reduce the number of weights in the WaveRNN. We find that, for a constant number of | |
parameters, large sparse networks perform better than small dense networks and this relationship holds for | |
sparsity levels beyond 96%. The small number of weights in a Sparse WaveRNN makes it possible to sample | |
high-fidelity audio on a mobile CPU in real time. Finally, we propose a new generation scheme based on | |
subscaling that folds a long sequence into a batch of shorter sequences and allows one to generate multiple | |
samples at once. The Subscale WaveRNN produces 16 samples per step without loss of quality and offers an | |
orthogonal method for increasing sampling efficiency. | |
""" | |
super().__init__(config) | |
if isinstance(self.args.mode, int): | |
self.n_classes = 2**self.args.mode | |
elif self.args.mode == "mold": | |
self.n_classes = 3 * 10 | |
elif self.args.mode == "gauss": | |
self.n_classes = 2 | |
else: | |
raise RuntimeError("Unknown model mode value - ", self.args.mode) | |
self.ap = AudioProcessor(**config.audio.to_dict()) | |
self.aux_dims = self.args.res_out_dims // 4 | |
if self.args.use_upsample_net: | |
assert ( | |
np.cumproduct(self.args.upsample_factors)[-1] == config.audio.hop_length | |
), " [!] upsample scales needs to be equal to hop_length" | |
self.upsample = UpsampleNetwork( | |
self.args.feat_dims, | |
self.args.upsample_factors, | |
self.args.compute_dims, | |
self.args.num_res_blocks, | |
self.args.res_out_dims, | |
self.args.pad, | |
self.args.use_aux_net, | |
) | |
else: | |
self.upsample = Upsample( | |
config.audio.hop_length, | |
self.args.pad, | |
self.args.num_res_blocks, | |
self.args.feat_dims, | |
self.args.compute_dims, | |
self.args.res_out_dims, | |
self.args.use_aux_net, | |
) | |
if self.args.use_aux_net: | |
self.I = nn.Linear(self.args.feat_dims + self.aux_dims + 1, self.args.rnn_dims) | |
self.rnn1 = nn.GRU(self.args.rnn_dims, self.args.rnn_dims, batch_first=True) | |
self.rnn2 = nn.GRU(self.args.rnn_dims + self.aux_dims, self.args.rnn_dims, batch_first=True) | |
self.fc1 = nn.Linear(self.args.rnn_dims + self.aux_dims, self.args.fc_dims) | |
self.fc2 = nn.Linear(self.args.fc_dims + self.aux_dims, self.args.fc_dims) | |
self.fc3 = nn.Linear(self.args.fc_dims, self.n_classes) | |
else: | |
self.I = nn.Linear(self.args.feat_dims + 1, self.args.rnn_dims) | |
self.rnn1 = nn.GRU(self.args.rnn_dims, self.args.rnn_dims, batch_first=True) | |
self.rnn2 = nn.GRU(self.args.rnn_dims, self.args.rnn_dims, batch_first=True) | |
self.fc1 = nn.Linear(self.args.rnn_dims, self.args.fc_dims) | |
self.fc2 = nn.Linear(self.args.fc_dims, self.args.fc_dims) | |
self.fc3 = nn.Linear(self.args.fc_dims, self.n_classes) | |
def forward(self, x, mels): | |
bsize = x.size(0) | |
h1 = torch.zeros(1, bsize, self.args.rnn_dims).to(x.device) | |
h2 = torch.zeros(1, bsize, self.args.rnn_dims).to(x.device) | |
mels, aux = self.upsample(mels) | |
if self.args.use_aux_net: | |
aux_idx = [self.aux_dims * i for i in range(5)] | |
a1 = aux[:, :, aux_idx[0] : aux_idx[1]] | |
a2 = aux[:, :, aux_idx[1] : aux_idx[2]] | |
a3 = aux[:, :, aux_idx[2] : aux_idx[3]] | |
a4 = aux[:, :, aux_idx[3] : aux_idx[4]] | |
x = ( | |
torch.cat([x.unsqueeze(-1), mels, a1], dim=2) | |
if self.args.use_aux_net | |
else torch.cat([x.unsqueeze(-1), mels], dim=2) | |
) | |
x = self.I(x) | |
res = x | |
self.rnn1.flatten_parameters() | |
x, _ = self.rnn1(x, h1) | |
x = x + res | |
res = x | |
x = torch.cat([x, a2], dim=2) if self.args.use_aux_net else x | |
self.rnn2.flatten_parameters() | |
x, _ = self.rnn2(x, h2) | |
x = x + res | |
x = torch.cat([x, a3], dim=2) if self.args.use_aux_net else x | |
x = F.relu(self.fc1(x)) | |
x = torch.cat([x, a4], dim=2) if self.args.use_aux_net else x | |
x = F.relu(self.fc2(x)) | |
return self.fc3(x) | |
def inference(self, mels, batched=None, target=None, overlap=None): | |
self.eval() | |
output = [] | |
start = time.time() | |
rnn1 = self.get_gru_cell(self.rnn1) | |
rnn2 = self.get_gru_cell(self.rnn2) | |
with torch.no_grad(): | |
if isinstance(mels, np.ndarray): | |
mels = torch.FloatTensor(mels).to(str(next(self.parameters()).device)) | |
if mels.ndim == 2: | |
mels = mels.unsqueeze(0) | |
wave_len = (mels.size(-1) - 1) * self.config.audio.hop_length | |
mels = self.pad_tensor(mels.transpose(1, 2), pad=self.args.pad, side="both") | |
mels, aux = self.upsample(mels.transpose(1, 2)) | |
if batched: | |
mels = self.fold_with_overlap(mels, target, overlap) | |
if aux is not None: | |
aux = self.fold_with_overlap(aux, target, overlap) | |
b_size, seq_len, _ = mels.size() | |
h1 = torch.zeros(b_size, self.args.rnn_dims).type_as(mels) | |
h2 = torch.zeros(b_size, self.args.rnn_dims).type_as(mels) | |
x = torch.zeros(b_size, 1).type_as(mels) | |
if self.args.use_aux_net: | |
d = self.aux_dims | |
aux_split = [aux[:, :, d * i : d * (i + 1)] for i in range(4)] | |
for i in range(seq_len): | |
m_t = mels[:, i, :] | |
if self.args.use_aux_net: | |
a1_t, a2_t, a3_t, a4_t = (a[:, i, :] for a in aux_split) | |
x = torch.cat([x, m_t, a1_t], dim=1) if self.args.use_aux_net else torch.cat([x, m_t], dim=1) | |
x = self.I(x) | |
h1 = rnn1(x, h1) | |
x = x + h1 | |
inp = torch.cat([x, a2_t], dim=1) if self.args.use_aux_net else x | |
h2 = rnn2(inp, h2) | |
x = x + h2 | |
x = torch.cat([x, a3_t], dim=1) if self.args.use_aux_net else x | |
x = F.relu(self.fc1(x)) | |
x = torch.cat([x, a4_t], dim=1) if self.args.use_aux_net else x | |
x = F.relu(self.fc2(x)) | |
logits = self.fc3(x) | |
if self.args.mode == "mold": | |
sample = sample_from_discretized_mix_logistic(logits.unsqueeze(0).transpose(1, 2)) | |
output.append(sample.view(-1)) | |
x = sample.transpose(0, 1).type_as(mels) | |
elif self.args.mode == "gauss": | |
sample = sample_from_gaussian(logits.unsqueeze(0).transpose(1, 2)) | |
output.append(sample.view(-1)) | |
x = sample.transpose(0, 1).type_as(mels) | |
elif isinstance(self.args.mode, int): | |
posterior = F.softmax(logits, dim=1) | |
distrib = torch.distributions.Categorical(posterior) | |
sample = 2 * distrib.sample().float() / (self.n_classes - 1.0) - 1.0 | |
output.append(sample) | |
x = sample.unsqueeze(-1) | |
else: | |
raise RuntimeError("Unknown model mode value - ", self.args.mode) | |
if i % 100 == 0: | |
self.gen_display(i, seq_len, b_size, start) | |
output = torch.stack(output).transpose(0, 1) | |
output = output.cpu() | |
if batched: | |
output = output.numpy() | |
output = output.astype(np.float64) | |
output = self.xfade_and_unfold(output, target, overlap) | |
else: | |
output = output[0] | |
if self.args.mulaw and isinstance(self.args.mode, int): | |
output = mulaw_decode(wav=output, mulaw_qc=self.args.mode) | |
# Fade-out at the end to avoid signal cutting out suddenly | |
fade_out = np.linspace(1, 0, 20 * self.config.audio.hop_length) | |
output = output[:wave_len] | |
if wave_len > len(fade_out): | |
output[-20 * self.config.audio.hop_length :] *= fade_out | |
self.train() | |
return output | |
def gen_display(self, i, seq_len, b_size, start): | |
gen_rate = (i + 1) / (time.time() - start) * b_size / 1000 | |
realtime_ratio = gen_rate * 1000 / self.config.audio.sample_rate | |
stream( | |
"%i/%i -- batch_size: %i -- gen_rate: %.1f kHz -- x_realtime: %.1f ", | |
(i * b_size, seq_len * b_size, b_size, gen_rate, realtime_ratio), | |
) | |
def fold_with_overlap(self, x, target, overlap): | |
"""Fold the tensor with overlap for quick batched inference. | |
Overlap will be used for crossfading in xfade_and_unfold() | |
Args: | |
x (tensor) : Upsampled conditioning features. | |
shape=(1, timesteps, features) | |
target (int) : Target timesteps for each index of batch | |
overlap (int) : Timesteps for both xfade and rnn warmup | |
Return: | |
(tensor) : shape=(num_folds, target + 2 * overlap, features) | |
Details: | |
x = [[h1, h2, ... hn]] | |
Where each h is a vector of conditioning features | |
Eg: target=2, overlap=1 with x.size(1)=10 | |
folded = [[h1, h2, h3, h4], | |
[h4, h5, h6, h7], | |
[h7, h8, h9, h10]] | |
""" | |
_, total_len, features = x.size() | |
# Calculate variables needed | |
num_folds = (total_len - overlap) // (target + overlap) | |
extended_len = num_folds * (overlap + target) + overlap | |
remaining = total_len - extended_len | |
# Pad if some time steps poking out | |
if remaining != 0: | |
num_folds += 1 | |
padding = target + 2 * overlap - remaining | |
x = self.pad_tensor(x, padding, side="after") | |
folded = torch.zeros(num_folds, target + 2 * overlap, features).to(x.device) | |
# Get the values for the folded tensor | |
for i in range(num_folds): | |
start = i * (target + overlap) | |
end = start + target + 2 * overlap | |
folded[i] = x[:, start:end, :] | |
return folded | |
def get_gru_cell(gru): | |
gru_cell = nn.GRUCell(gru.input_size, gru.hidden_size) | |
gru_cell.weight_hh.data = gru.weight_hh_l0.data | |
gru_cell.weight_ih.data = gru.weight_ih_l0.data | |
gru_cell.bias_hh.data = gru.bias_hh_l0.data | |
gru_cell.bias_ih.data = gru.bias_ih_l0.data | |
return gru_cell | |
def pad_tensor(x, pad, side="both"): | |
# NB - this is just a quick method i need right now | |
# i.e., it won't generalise to other shapes/dims | |
b, t, c = x.size() | |
total = t + 2 * pad if side == "both" else t + pad | |
padded = torch.zeros(b, total, c).to(x.device) | |
if side in ("before", "both"): | |
padded[:, pad : pad + t, :] = x | |
elif side == "after": | |
padded[:, :t, :] = x | |
return padded | |
def xfade_and_unfold(y, target, overlap): | |
"""Applies a crossfade and unfolds into a 1d array. | |
Args: | |
y (ndarry) : Batched sequences of audio samples | |
shape=(num_folds, target + 2 * overlap) | |
dtype=np.float64 | |
overlap (int) : Timesteps for both xfade and rnn warmup | |
Return: | |
(ndarry) : audio samples in a 1d array | |
shape=(total_len) | |
dtype=np.float64 | |
Details: | |
y = [[seq1], | |
[seq2], | |
[seq3]] | |
Apply a gain envelope at both ends of the sequences | |
y = [[seq1_in, seq1_target, seq1_out], | |
[seq2_in, seq2_target, seq2_out], | |
[seq3_in, seq3_target, seq3_out]] | |
Stagger and add up the groups of samples: | |
[seq1_in, seq1_target, (seq1_out + seq2_in), seq2_target, ...] | |
""" | |
num_folds, length = y.shape | |
target = length - 2 * overlap | |
total_len = num_folds * (target + overlap) + overlap | |
# Need some silence for the rnn warmup | |
silence_len = overlap // 2 | |
fade_len = overlap - silence_len | |
silence = np.zeros((silence_len), dtype=np.float64) | |
# Equal power crossfade | |
t = np.linspace(-1, 1, fade_len, dtype=np.float64) | |
fade_in = np.sqrt(0.5 * (1 + t)) | |
fade_out = np.sqrt(0.5 * (1 - t)) | |
# Concat the silence to the fades | |
fade_in = np.concatenate([silence, fade_in]) | |
fade_out = np.concatenate([fade_out, silence]) | |
# Apply the gain to the overlap samples | |
y[:, :overlap] *= fade_in | |
y[:, -overlap:] *= fade_out | |
unfolded = np.zeros((total_len), dtype=np.float64) | |
# Loop to add up all the samples | |
for i in range(num_folds): | |
start = i * (target + overlap) | |
end = start + target + 2 * overlap | |
unfolded[start:end] += y[i] | |
return unfolded | |
def load_checkpoint( | |
self, config, checkpoint_path, eval=False, cache=False | |
): # pylint: disable=unused-argument, redefined-builtin | |
state = load_fsspec(checkpoint_path, map_location=torch.device("cpu"), cache=cache) | |
self.load_state_dict(state["model"]) | |
if eval: | |
self.eval() | |
assert not self.training | |
def train_step(self, batch: Dict, criterion: Dict) -> Tuple[Dict, Dict]: | |
mels = batch["input"] | |
waveform = batch["waveform"] | |
waveform_coarse = batch["waveform_coarse"] | |
y_hat = self.forward(waveform, mels) | |
if isinstance(self.args.mode, int): | |
y_hat = y_hat.transpose(1, 2).unsqueeze(-1) | |
else: | |
waveform_coarse = waveform_coarse.float() | |
waveform_coarse = waveform_coarse.unsqueeze(-1) | |
# compute losses | |
loss_dict = criterion(y_hat, waveform_coarse) | |
return {"model_output": y_hat}, loss_dict | |
def eval_step(self, batch: Dict, criterion: Dict) -> Tuple[Dict, Dict]: | |
return self.train_step(batch, criterion) | |
def test( | |
self, assets: Dict, test_loader: "DataLoader", output: Dict # pylint: disable=unused-argument | |
) -> Tuple[Dict, Dict]: | |
ap = self.ap | |
figures = {} | |
audios = {} | |
samples = test_loader.dataset.load_test_samples(1) | |
for idx, sample in enumerate(samples): | |
x = torch.FloatTensor(sample[0]) | |
x = x.to(next(self.parameters()).device) | |
y_hat = self.inference(x, self.config.batched, self.config.target_samples, self.config.overlap_samples) | |
x_hat = ap.melspectrogram(y_hat) | |
figures.update( | |
{ | |
f"test_{idx}/ground_truth": plot_spectrogram(x.T), | |
f"test_{idx}/prediction": plot_spectrogram(x_hat.T), | |
} | |
) | |
audios.update({f"test_{idx}/audio": y_hat}) | |
# audios.update({f"real_{idx}/audio": y_hat}) | |
return figures, audios | |
def test_log( | |
self, outputs: Dict, logger: "Logger", assets: Dict, steps: int # pylint: disable=unused-argument | |
) -> Tuple[Dict, np.ndarray]: | |
figures, audios = outputs | |
logger.eval_figures(steps, figures) | |
logger.eval_audios(steps, audios, self.ap.sample_rate) | |
def format_batch(batch: Dict) -> Dict: | |
waveform = batch[0] | |
mels = batch[1] | |
waveform_coarse = batch[2] | |
return {"input": mels, "waveform": waveform, "waveform_coarse": waveform_coarse} | |
def get_data_loader( # pylint: disable=no-self-use | |
self, | |
config: Coqpit, | |
assets: Dict, | |
is_eval: True, | |
samples: List, | |
verbose: bool, | |
num_gpus: int, | |
): | |
ap = self.ap | |
dataset = WaveRNNDataset( | |
ap=ap, | |
items=samples, | |
seq_len=config.seq_len, | |
hop_len=ap.hop_length, | |
pad=config.model_args.pad, | |
mode=config.model_args.mode, | |
mulaw=config.model_args.mulaw, | |
is_training=not is_eval, | |
verbose=verbose, | |
) | |
sampler = DistributedSampler(dataset, shuffle=True) if num_gpus > 1 else None | |
loader = DataLoader( | |
dataset, | |
batch_size=1 if is_eval else config.batch_size, | |
shuffle=num_gpus == 0, | |
collate_fn=dataset.collate, | |
sampler=sampler, | |
num_workers=config.num_eval_loader_workers if is_eval else config.num_loader_workers, | |
pin_memory=True, | |
) | |
return loader | |
def get_criterion(self): | |
# define train functions | |
return WaveRNNLoss(self.args.mode) | |
def init_from_config(config: "WavernnConfig"): | |
return Wavernn(config) | |