xTTS-fr / TTS /vocoder /datasets /preprocess.py
Shadhil's picture
voice-clone with single audio sample input
9b2107c
raw
history blame
2.59 kB
import glob
import os
from pathlib import Path
import numpy as np
from coqpit import Coqpit
from tqdm import tqdm
from TTS.utils.audio import AudioProcessor
from TTS.utils.audio.numpy_transforms import mulaw_encode, quantize
def preprocess_wav_files(out_path: str, config: Coqpit, ap: AudioProcessor):
"""Process wav and compute mel and quantized wave signal.
It is mainly used by WaveRNN dataloader.
Args:
out_path (str): Parent folder path to save the files.
config (Coqpit): Model config.
ap (AudioProcessor): Audio processor.
"""
os.makedirs(os.path.join(out_path, "quant"), exist_ok=True)
os.makedirs(os.path.join(out_path, "mel"), exist_ok=True)
wav_files = find_wav_files(config.data_path)
for path in tqdm(wav_files):
wav_name = Path(path).stem
quant_path = os.path.join(out_path, "quant", wav_name + ".npy")
mel_path = os.path.join(out_path, "mel", wav_name + ".npy")
y = ap.load_wav(path)
mel = ap.melspectrogram(y)
np.save(mel_path, mel)
if isinstance(config.mode, int):
quant = (
mulaw_encode(wav=y, mulaw_qc=config.mode)
if config.model_args.mulaw
else quantize(x=y, quantize_bits=config.mode)
)
np.save(quant_path, quant)
def find_wav_files(data_path, file_ext="wav"):
wav_paths = glob.glob(os.path.join(data_path, "**", f"*.{file_ext}"), recursive=True)
return wav_paths
def find_feat_files(data_path):
feat_paths = glob.glob(os.path.join(data_path, "**", "*.npy"), recursive=True)
return feat_paths
def load_wav_data(data_path, eval_split_size, file_ext="wav"):
wav_paths = find_wav_files(data_path, file_ext=file_ext)
assert len(wav_paths) > 0, f" [!] {data_path} is empty."
np.random.seed(0)
np.random.shuffle(wav_paths)
return wav_paths[:eval_split_size], wav_paths[eval_split_size:]
def load_wav_feat_data(data_path, feat_path, eval_split_size):
wav_paths = find_wav_files(data_path)
feat_paths = find_feat_files(feat_path)
wav_paths.sort(key=lambda x: Path(x).stem)
feat_paths.sort(key=lambda x: Path(x).stem)
assert len(wav_paths) == len(feat_paths), f" [!] {len(wav_paths)} vs {feat_paths}"
for wav, feat in zip(wav_paths, feat_paths):
wav_name = Path(wav).stem
feat_name = Path(feat).stem
assert wav_name == feat_name
items = list(zip(wav_paths, feat_paths))
np.random.seed(0)
np.random.shuffle(items)
return items[:eval_split_size], items[eval_split_size:]