Upload 6 files
Browse files- VideoProcessor.py +141 -0
- app.py +98 -0
- metadata/.DS_Store +0 -0
- processed_files/.DS_Store +0 -0
- trained_y8m.pt +3 -0
- uploaded_files/.DS_Store +0 -0
VideoProcessor.py
ADDED
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import cv2
|
3 |
+
import torch
|
4 |
+
import pandas as pd
|
5 |
+
from tqdm import tqdm
|
6 |
+
from ultralytics import YOLO
|
7 |
+
from PIL import Image
|
8 |
+
import pillow_heif
|
9 |
+
import numpy as np
|
10 |
+
|
11 |
+
class MediaProcessor:
|
12 |
+
def __init__(self, output_path, model_path, batch_size=16):
|
13 |
+
self.output_path = output_path
|
14 |
+
self.model_path = model_path
|
15 |
+
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
16 |
+
self.model = YOLO(self.model_path).to(self.device)
|
17 |
+
self.colors = {
|
18 |
+
0: (255, 0, 0), # quadrotor - красный
|
19 |
+
1: (0, 255, 0), # airplane - зеленый
|
20 |
+
2: (0, 0, 255), # helicopter - синий
|
21 |
+
3: (255, 255, 0), # bird - желтый
|
22 |
+
4: (255, 0, 255) # uav-plane - фиолетовый
|
23 |
+
}
|
24 |
+
self.batch_size = batch_size
|
25 |
+
|
26 |
+
def process_single_video(self, video_path):
|
27 |
+
cap = cv2.VideoCapture(video_path)
|
28 |
+
output_video_path = os.path.join(self.output_path, os.path.basename(video_path))
|
29 |
+
fourcc = cv2.VideoWriter_fourcc(*'avc1')#*'avc1')
|
30 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
31 |
+
out = cv2.VideoWriter(output_video_path, fourcc, fps, (int(cap.get(3)), int(cap.get(4))))
|
32 |
+
|
33 |
+
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
34 |
+
frames = []
|
35 |
+
|
36 |
+
columns = ['frame_num', 'timestamp', 'class', 'confidence', 'x1', 'y1', 'x2', 'y2']
|
37 |
+
data = []
|
38 |
+
|
39 |
+
frame_num = 0
|
40 |
+
|
41 |
+
with tqdm(total=total_frames, desc=f"Processing Video {os.path.basename(video_path)}", position=0, leave=True) as pbar:
|
42 |
+
while cap.isOpened():
|
43 |
+
ret, frame = cap.read()
|
44 |
+
if not ret:
|
45 |
+
break
|
46 |
+
|
47 |
+
frames.append(frame)
|
48 |
+
frame_num += 1
|
49 |
+
|
50 |
+
if len(frames) == self.batch_size or frame_num == total_frames:
|
51 |
+
results = self.model(frames, verbose=False)
|
52 |
+
|
53 |
+
for i, result in enumerate(results):
|
54 |
+
current_frame_num = frame_num - len(frames) + i + 1
|
55 |
+
timestamp = current_frame_num / fps
|
56 |
+
for box in result.boxes:
|
57 |
+
x1, y1, x2, y2 = box.xyxy[0].tolist()
|
58 |
+
conf = box.conf[0].item()
|
59 |
+
cls = box.cls[0].item()
|
60 |
+
label = f'{self.model.names[int(cls)]} {conf:.2f}'
|
61 |
+
color = self.colors.get(int(cls), (0, 255, 0))
|
62 |
+
cv2.rectangle(frames[i], (int(x1), int(y1)), (int(x2), int(y2)), color, 1)
|
63 |
+
cv2.putText(frames[i], label, (int(x1), int(y1) - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 1)
|
64 |
+
|
65 |
+
data.append([current_frame_num, timestamp, self.model.names[int(cls)], conf, int(x1), int(y1), int(x2), int(y2)])
|
66 |
+
|
67 |
+
out.write(frames[i])
|
68 |
+
pbar.update(1)
|
69 |
+
|
70 |
+
frames = []
|
71 |
+
|
72 |
+
cap.release()
|
73 |
+
out.release()
|
74 |
+
cv2.destroyAllWindows()
|
75 |
+
|
76 |
+
df = pd.DataFrame(data, columns=columns)
|
77 |
+
df.to_csv(os.path.join('metadata', f"{os.path.basename(video_path)}_detection_results.csv"), index=False)
|
78 |
+
print(df)
|
79 |
+
return output_video_path
|
80 |
+
|
81 |
+
def load_image(self, path):
|
82 |
+
if path.lower().endswith('.heic'):
|
83 |
+
heif_file = pillow_heif.open_heif(path)
|
84 |
+
image = Image.frombytes(
|
85 |
+
heif_file.mode,
|
86 |
+
heif_file.size,
|
87 |
+
heif_file.data,
|
88 |
+
"raw",
|
89 |
+
heif_file.mode,
|
90 |
+
heif_file.stride,
|
91 |
+
)
|
92 |
+
return cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
|
93 |
+
else:
|
94 |
+
return cv2.imread(path)
|
95 |
+
|
96 |
+
def process_images(self, input_paths):
|
97 |
+
images = [self.load_image(path) for path in input_paths]
|
98 |
+
results = self.model(images, verbose=False)
|
99 |
+
#print(results)
|
100 |
+
processed_images = []
|
101 |
+
|
102 |
+
for i, result in enumerate(results):
|
103 |
+
for box in result.boxes:
|
104 |
+
x1, y1, x2, y2 = box.xyxy[0].tolist()
|
105 |
+
conf = box.conf[0].item()
|
106 |
+
cls = box.cls[0].item()
|
107 |
+
label = f'{self.model.names[int(cls)]} {conf:.2f}'
|
108 |
+
color = self.colors.get(int(cls), (0, 255, 0))
|
109 |
+
cv2.rectangle(images[i], (int(x1), int(y1)), (int(x2), int(y2)), color, 2)
|
110 |
+
cv2.putText(images[i], label, (int(x1), int(y1) - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
|
111 |
+
|
112 |
+
# Сохраняем все изображения в формате PNG
|
113 |
+
processed_image_path = os.path.join(self.output_path, str(os.path.splitext(os.path.basename(input_paths[i]))[0]) + '.png')
|
114 |
+
print(f"Сохранение изображения по пути: {processed_image_path}")
|
115 |
+
processed_image = Image.fromarray(cv2.cvtColor(images[i], cv2.COLOR_BGR2RGB))
|
116 |
+
processed_image.save(processed_image_path, format='PNG')
|
117 |
+
processed_images.append(processed_image_path)
|
118 |
+
|
119 |
+
return processed_images
|
120 |
+
|
121 |
+
def process_videos(self, input_paths):
|
122 |
+
vids = []
|
123 |
+
for video_path in input_paths:
|
124 |
+
output_video_path = self.process_single_video(video_path)
|
125 |
+
vids.append(output_video_path)
|
126 |
+
return vids
|
127 |
+
|
128 |
+
def process_media(input_paths, processor):
|
129 |
+
image_extensions = ('.jpg', '.jpeg', '.png', '.bmp', '.tiff', '.heic', '.heif', '.webp')
|
130 |
+
video_extensions = ('.mp4', '.avi', '.mov', '.mkv', '.flv', '.wmv', '.webm')
|
131 |
+
|
132 |
+
image_paths = [path for path in input_paths if path.lower().endswith(image_extensions)]
|
133 |
+
video_paths = [path for path in input_paths if path.lower().endswith(video_extensions)]
|
134 |
+
|
135 |
+
imgs, vids = [], []
|
136 |
+
|
137 |
+
if image_paths:
|
138 |
+
imgs = processor.process_images(image_paths)
|
139 |
+
if video_paths:
|
140 |
+
vids = processor.process_videos(video_paths)
|
141 |
+
return imgs, vids
|
app.py
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import os
|
3 |
+
import cv2
|
4 |
+
import torch
|
5 |
+
from tqdm import tqdm
|
6 |
+
from ultralytics import YOLO
|
7 |
+
import pandas as pd
|
8 |
+
import numpy as np
|
9 |
+
from PIL import Image
|
10 |
+
from VideoProcessor import MediaProcessor, process_media
|
11 |
+
|
12 |
+
# Создание папок для загрузки и обработки файлов
|
13 |
+
def create_folders(upload_folder="uploaded_files", processed_folder="processed_files"):
|
14 |
+
if not os.path.exists(upload_folder):
|
15 |
+
os.makedirs(upload_folder)
|
16 |
+
if not os.path.exists(processed_folder):
|
17 |
+
os.makedirs(processed_folder)
|
18 |
+
|
19 |
+
# Функция для загрузки файлов
|
20 |
+
def save_uploaded_file(uploaded_file, folder_name="uploaded_files"):
|
21 |
+
file_path = os.path.join(folder_name, uploaded_file.name)
|
22 |
+
with open(file_path, "wb") as f:
|
23 |
+
f.write(uploaded_file.getbuffer())
|
24 |
+
return file_path
|
25 |
+
|
26 |
+
# Функция для получения списка всех файлов в папке
|
27 |
+
def get_all_files(folder_name="processed_files"):
|
28 |
+
return os.listdir(folder_name)
|
29 |
+
|
30 |
+
# Функция для отображения файлов с центровкой
|
31 |
+
def display_file(selected_file, folder_name="processed_files"):
|
32 |
+
file_path = os.path.join(folder_name, selected_file)
|
33 |
+
if selected_file.endswith('.mp4'):
|
34 |
+
st.video(file_path)
|
35 |
+
else:
|
36 |
+
st.image(file_path, use_column_width=True)
|
37 |
+
|
38 |
+
def exclude_processed_files(file_list, processed_files):
|
39 |
+
return [file for file in file_list if os.path.basename(file.name) not in processed_files]
|
40 |
+
|
41 |
+
# Основная функция приложения
|
42 |
+
def main(processor):
|
43 |
+
variants = []
|
44 |
+
processed_files = [] # Массив для хранения уже обработанных файлов
|
45 |
+
|
46 |
+
# Создание папок для загрузки и обработки файлов
|
47 |
+
create_folders()
|
48 |
+
|
49 |
+
# Заголовок приложения
|
50 |
+
st.title("Загрузите фото и видео, затем выберите файл из списка")
|
51 |
+
|
52 |
+
# Загрузка файлов
|
53 |
+
uploaded_files = st.file_uploader("Загрузите фото и видео", accept_multiple_files=True)
|
54 |
+
if uploaded_files:
|
55 |
+
input_paths = []
|
56 |
+
# Исключение уже обработанных файлов
|
57 |
+
new_files = exclude_processed_files(uploaded_files, processed_files)
|
58 |
+
for uploaded_file in new_files:
|
59 |
+
file_path = save_uploaded_file(uploaded_file)
|
60 |
+
input_paths.append(file_path)
|
61 |
+
|
62 |
+
if input_paths:
|
63 |
+
st.toast(f"Файлы загружены", icon="🟢")
|
64 |
+
imgs, vids = process_media(input_paths, processor)
|
65 |
+
# Получение реальных названий файлов с расширениями, но без папки
|
66 |
+
variants.extend([os.path.basename(i) for i in imgs])
|
67 |
+
variants.extend([os.path.basename(i) for i in vids])
|
68 |
+
st.toast(f"Файлы обработаны", icon="🟢")
|
69 |
+
|
70 |
+
# Добавление обработанных файлов в processed_files
|
71 |
+
processed_files.extend([os.path.basename(i) for i in imgs])
|
72 |
+
processed_files.extend([os.path.basename(i) for i in vids])
|
73 |
+
|
74 |
+
# Поле для выбора файла из выпадающего списка
|
75 |
+
selected_file = st.selectbox("Выберите файл", variants)
|
76 |
+
# Центровка и отображение выбранного файла
|
77 |
+
if selected_file:
|
78 |
+
st.markdown(
|
79 |
+
"""
|
80 |
+
<style>
|
81 |
+
.centered {
|
82 |
+
display: flex;
|
83 |
+
justify-content: center;
|
84 |
+
}
|
85 |
+
</style>
|
86 |
+
""",
|
87 |
+
unsafe_allow_html=True
|
88 |
+
)
|
89 |
+
st.markdown('<div class="centered">', unsafe_allow_html=True)
|
90 |
+
display_file(selected_file)
|
91 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
92 |
+
|
93 |
+
# Запуск приложения
|
94 |
+
if __name__ == "__main__":
|
95 |
+
model_path = 'trained_y8m.pt' # Укажите путь к модели
|
96 |
+
processor = MediaProcessor('processed_files', model_path, batch_size=16)
|
97 |
+
|
98 |
+
main(processor)
|
metadata/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
processed_files/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
trained_y8m.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ad5f0e0a3bfd6fb1c130c24ff9a7b785343330e508f1d2ff287eaee693bf949d
|
3 |
+
size 52004865
|
uploaded_files/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|