File size: 7,680 Bytes
08d7644
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
# coding=utf-8
# Copyleft 2019 project LXRT.

import os
import collections

import torch
from tqdm import tqdm
import torch.nn as nn
from torch.utils.data.dataloader import DataLoader

from param import args
from pretrain.qa_answer_table import load_lxmert_qa
from tasks.gqa_model import GQAModel
from tasks.gqa_data import GQADataset, GQATorchDataset, GQAEvaluator


DataTuple = collections.namedtuple("DataTuple", 'dataset loader evaluator')


def get_tuple(splits: str, bs:int, shuffle=False, drop_last=False) -> DataTuple:
    dset = GQADataset(splits)
    tset = GQATorchDataset(dset)
    evaluator = GQAEvaluator(dset)
    data_loader = DataLoader(
        tset, batch_size=bs,
        shuffle=shuffle, num_workers=args.num_workers,
        drop_last=drop_last, pin_memory=True
    )

    return DataTuple(dataset=dset, loader=data_loader, evaluator=evaluator)


class GQA:
    def __init__(self):
        self.train_tuple = get_tuple(
            args.train, bs=args.batch_size, shuffle=True, drop_last=True
        )
        if args.valid != "":
            valid_bsize = 2048 if args.multiGPU else 512
            self.valid_tuple = get_tuple(
                args.valid, bs=valid_bsize,
                shuffle=False, drop_last=False
            )
        else:
            self.valid_tuple = None

        self.model = GQAModel(self.train_tuple.dataset.num_answers)

        # Load pre-trained weights
        if args.load_lxmert is not None:
            self.model.lxrt_encoder.load(args.load_lxmert)
        if args.load_lxmert_qa is not None:
            load_lxmert_qa(args.load_lxmert_qa, self.model,
                           label2ans=self.train_tuple.dataset.label2ans)

        # GPU options
        self.model = self.model.cuda()
        if args.multiGPU:
            self.model.lxrt_encoder.multi_gpu()

        # Losses and optimizer
        self.bce_loss = nn.BCEWithLogitsLoss()
        self.mce_loss = nn.CrossEntropyLoss(ignore_index=-1)
        if 'bert' in args.optim:
            batch_per_epoch = len(self.train_tuple.loader)
            t_total = int(batch_per_epoch * args.epochs)
            print("Total Iters: %d" % t_total)
            from lxrt.optimization import BertAdam
            self.optim = BertAdam(list(self.model.parameters()),
                                  lr=args.lr,
                                  warmup=0.1,
                                  t_total=t_total)
        else:
            self.optim = args.optimizer(list(self.model.parameters()), args.lr)

        self.output = args.output
        os.makedirs(self.output, exist_ok=True)

    def train(self, train_tuple, eval_tuple):
        dset, loader, evaluator = train_tuple
        iter_wrapper = (lambda x: tqdm(x, total=len(loader))) if args.tqdm else (lambda x: x)

        best_valid = 0.
        for epoch in range(args.epochs):
            quesid2ans = {}
            for i, (ques_id, feats, boxes, sent, target) in iter_wrapper(enumerate(loader)):

                self.model.train()
                self.optim.zero_grad()

                feats, boxes, target = feats.cuda(), boxes.cuda(), target.cuda()
                logit = self.model(feats, boxes, sent)
                assert logit.dim() == target.dim() == 2
                if args.mce_loss:
                    max_value, target = target.max(1)
                    loss = self.mce_loss(logit, target) * logit.size(1)
                else:
                    loss = self.bce_loss(logit, target)
                    loss = loss * logit.size(1)

                loss.backward()
                nn.utils.clip_grad_norm_(self.model.parameters(), 5.)
                self.optim.step()

                score, label = logit.max(1)
                for qid, l in zip(ques_id, label.cpu().numpy()):
                    ans = dset.label2ans[l]
                    quesid2ans[qid] = ans

            log_str = "\nEpoch %d: Train %0.2f\n" % (epoch, evaluator.evaluate(quesid2ans) * 100.)

            if self.valid_tuple is not None:  # Do Validation
                valid_score = self.evaluate(eval_tuple)
                if valid_score > best_valid:
                    best_valid = valid_score
                    self.save("BEST")

                log_str += "Epoch %d: Valid %0.2f\n" % (epoch, valid_score * 100.) + \
                           "Epoch %d: Best %0.2f\n" % (epoch, best_valid * 100.)

            print(log_str, end='')

            with open(self.output + "/log.log", 'a') as f:
                f.write(log_str)
                f.flush()

        self.save("LAST")

    def predict(self, eval_tuple: DataTuple, dump=None):
        self.model.eval()
        dset, loader, evaluator = eval_tuple
        quesid2ans = {}
        for i, datum_tuple in enumerate(loader):
            ques_id, feats, boxes, sent = datum_tuple[:4]   # avoid handling target
            with torch.no_grad():
                feats, boxes = feats.cuda(), boxes.cuda()
                logit = self.model(feats, boxes, sent)
                score, label = logit.max(1)
                for qid, l in zip(ques_id, label.cpu().numpy()):
                    ans = dset.label2ans[l]
                    quesid2ans[qid] = ans
        if dump is not None:
            evaluator.dump_result(quesid2ans, dump)
        return quesid2ans

    def evaluate(self, eval_tuple: DataTuple, dump=None):
        dset, loader, evaluator = eval_tuple
        quesid2ans = self.predict(eval_tuple, dump)
        return evaluator.evaluate(quesid2ans)

    @staticmethod
    def oracle_score(data_tuple):
        dset, loader, evaluator = data_tuple
        quesid2ans = {}
        for i, (ques_id, feats, boxes, sent, target) in enumerate(loader):
            _, label = target.max(1)
            for qid, l in zip(ques_id, label.cpu().numpy()):
                ans = dset.label2ans[l]
                quesid2ans[qid] = ans
        return evaluator.evaluate(quesid2ans)

    def save(self, name):
        torch.save(self.model.state_dict(),
                   os.path.join(self.output, "%s.pth" % name))

    def load(self, path):
        print("Load model from %s" % path)
        state_dict = torch.load("%s.pth" % path)
        for key in list(state_dict.keys()):
            if '.module' in key:
                state_dict[key.replace('.module', '')] = state_dict.pop(key)
        self.model.load_state_dict(state_dict, strict=False)


if __name__ == "__main__":
    # Build Class
    gqa = GQA()

    # Load Model
    if args.load is not None:
        gqa.load(args.load)

    # Test or Train
    if args.test is not None:
        args.fast = args.tiny = False       # Always loading all data in test
        if 'submit' in args.test:
            gqa.predict(
                get_tuple(args.test, bs=args.batch_size,
                          shuffle=False, drop_last=False),
                dump=os.path.join(args.output, 'submit_predict.json')
            )
        if 'testdev' in args.test:
            result = gqa.evaluate(
                get_tuple('testdev', bs=args.batch_size,
                          shuffle=False, drop_last=False),
                dump=os.path.join(args.output, 'testdev_predict.json')
            )
            print(result)
    else:
        # print("Train Oracle: %0.2f" % (gqa.oracle_score(gqa.train_tuple) * 100))
        print('Splits in Train data:', gqa.train_tuple.dataset.splits)
        if gqa.valid_tuple is not None:
            print('Splits in Valid data:', gqa.valid_tuple.dataset.splits)
            print("Valid Oracle: %0.2f" % (gqa.oracle_score(gqa.valid_tuple) * 100))
        else:
            print("DO NOT USE VALIDATION")
        gqa.train(gqa.train_tuple, gqa.valid_tuple)