Spaces:
Sleeping
Sleeping
File size: 6,387 Bytes
08d7644 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
# coding=utf-8
# Copyleft 2019 project LXRT.
import os
import collections
from tqdm import tqdm
import torch
import torch.nn as nn
from torch.utils.data.dataloader import DataLoader
from param import args
from tasks.nlvr2_model import NLVR2Model
from tasks.nlvr2_data import NLVR2Dataset, NLVR2TorchDataset, NLVR2Evaluator
DataTuple = collections.namedtuple("DataTuple", 'dataset loader evaluator')
def get_tuple(splits: str, bs:int, shuffle=False, drop_last=False) -> DataTuple:
dset = NLVR2Dataset(splits)
tset = NLVR2TorchDataset(dset)
evaluator = NLVR2Evaluator(dset)
data_loader = DataLoader(
tset, batch_size=bs,
shuffle=shuffle, num_workers=args.num_workers,
drop_last=drop_last, pin_memory=True
)
return DataTuple(dataset=dset, loader=data_loader, evaluator=evaluator)
class NLVR2:
def __init__(self):
self.train_tuple = get_tuple(
args.train, bs=args.batch_size, shuffle=True, drop_last=True
)
if args.valid != "":
valid_bsize = 2048 if args.multiGPU else 512
self.valid_tuple = get_tuple(
args.valid, bs=valid_bsize,
shuffle=False, drop_last=False
)
else:
self.valid_tuple = None
self.model = NLVR2Model()
# Load pre-trained weights
if args.load_lxmert is not None:
self.model.lxrt_encoder.load(args.load_lxmert)
# GPU options
if args.multiGPU:
self.model.lxrt_encoder.multi_gpu()
self.model = self.model.cuda()
# Losses and optimizer
self.mce_loss = nn.CrossEntropyLoss(ignore_index=-1)
if 'bert' in args.optim:
batch_per_epoch = len(self.train_tuple.loader)
t_total = int(batch_per_epoch * args.epochs)
print("Total Iters: %d" % t_total)
from lxrt.optimization import BertAdam
self.optim = BertAdam(list(self.model.parameters()),
lr=args.lr,
warmup=0.1,
t_total=t_total)
else:
self.optim = args.optimizer(list(self.model.parameters()), args.lr)
self.output = args.output
os.makedirs(self.output, exist_ok=True)
def train(self, train_tuple, eval_tuple):
dset, loader, evaluator = train_tuple
iter_wrapper = (lambda x: tqdm(x, total=len(loader))) if args.tqdm else (lambda x: x)
best_valid = 0.
for epoch in range(args.epochs):
quesid2ans = {}
for i, (ques_id, feats, boxes, sent, label) in iter_wrapper(enumerate(loader)):
self.model.train()
self.optim.zero_grad()
feats, boxes, label = feats.cuda(), boxes.cuda(), label.cuda()
logit = self.model(feats, boxes, sent)
loss = self.mce_loss(logit, label)
loss.backward()
nn.utils.clip_grad_norm_(self.model.parameters(), 5.)
self.optim.step()
score, predict = logit.max(1)
for qid, l in zip(ques_id, predict.cpu().numpy()):
quesid2ans[qid] = l
log_str = "\nEpoch %d: Train %0.2f\n" % (epoch, evaluator.evaluate(quesid2ans) * 100.)
if self.valid_tuple is not None: # Do Validation
valid_score = self.evaluate(eval_tuple)
if valid_score > best_valid:
best_valid = valid_score
self.save("BEST")
log_str += "Epoch %d: Valid %0.2f\n" % (epoch, valid_score * 100.) + \
"Epoch %d: Best %0.2f\n" % (epoch, best_valid * 100.)
print(log_str, end='')
with open(self.output + "/log.log", 'a') as f:
f.write(log_str)
f.flush()
self.save("LAST")
def predict(self, eval_tuple: DataTuple, dump=None):
self.model.eval()
dset, loader, evaluator = eval_tuple
quesid2ans = {}
for i, datum_tuple in enumerate(loader):
ques_id, feats, boxes, sent = datum_tuple[:4] # avoid handling target
with torch.no_grad():
feats, boxes = feats.cuda(), boxes.cuda()
logit = self.model(feats, boxes, sent)
score, predict = logit.max(1)
for qid, l in zip(ques_id, predict.cpu().numpy()):
quesid2ans[qid] = l
if dump is not None:
evaluator.dump_result(quesid2ans, dump)
return quesid2ans
def evaluate(self, eval_tuple: DataTuple, dump=None):
dset, loader, evaluator = eval_tuple
quesid2ans = self.predict(eval_tuple, dump)
return evaluator.evaluate(quesid2ans)
def save(self, name):
torch.save(self.model.state_dict(),
os.path.join(self.output, "%s.pth" % name))
def load(self, path):
print("Load model from %s" % path)
state_dict = torch.load("%s.pth" % path)
self.model.load_state_dict(state_dict)
if __name__ == "__main__":
# Build Class
nlvr2 = NLVR2()
# Load Model
if args.load is not None:
nlvr2.load(args.load)
# Test or Train
if args.test is not None:
args.fast = args.tiny = False # Always loading all data in test
if 'hidden' in args.test:
nlvr2.predict(
get_tuple(args.test, bs=args.batch_size,
shuffle=False, drop_last=False),
dump=os.path.join(args.output, 'hidden_predict.csv')
)
elif 'test' in args.test or 'valid' in args.test:
result = nlvr2.evaluate(
get_tuple(args.test, bs=args.batch_size,
shuffle=False, drop_last=False),
dump=os.path.join(args.output, '%s_predict.csv' % args.test)
)
print(result)
else:
assert False, "No such test option for %s" % args.test
else:
print('Splits in Train data:', nlvr2.train_tuple.dataset.splits)
if nlvr2.valid_tuple is not None:
print('Splits in Valid data:', nlvr2.valid_tuple.dataset.splits)
else:
print("DO NOT USE VALIDATION")
nlvr2.train(nlvr2.train_tuple, nlvr2.valid_tuple)
|