File size: 6,387 Bytes
08d7644
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
# coding=utf-8
# Copyleft 2019 project LXRT.

import os
import collections

from tqdm import tqdm
import torch
import torch.nn as nn
from torch.utils.data.dataloader import DataLoader

from param import args
from tasks.nlvr2_model import NLVR2Model
from tasks.nlvr2_data import NLVR2Dataset, NLVR2TorchDataset, NLVR2Evaluator

DataTuple = collections.namedtuple("DataTuple", 'dataset loader evaluator')


def get_tuple(splits: str, bs:int, shuffle=False, drop_last=False) -> DataTuple:
    dset = NLVR2Dataset(splits)
    tset = NLVR2TorchDataset(dset)
    evaluator = NLVR2Evaluator(dset)
    data_loader = DataLoader(
        tset, batch_size=bs,
        shuffle=shuffle, num_workers=args.num_workers,
        drop_last=drop_last, pin_memory=True
    )

    return DataTuple(dataset=dset, loader=data_loader, evaluator=evaluator)


class NLVR2:
    def __init__(self):
        self.train_tuple = get_tuple(
            args.train, bs=args.batch_size, shuffle=True, drop_last=True
        )
        if args.valid != "":
            valid_bsize = 2048 if args.multiGPU else 512
            self.valid_tuple = get_tuple(
                args.valid, bs=valid_bsize,
                shuffle=False, drop_last=False
            )
        else:
            self.valid_tuple = None

        self.model = NLVR2Model()

        # Load pre-trained weights
        if args.load_lxmert is not None:
            self.model.lxrt_encoder.load(args.load_lxmert)

        # GPU options
        if args.multiGPU:
            self.model.lxrt_encoder.multi_gpu()
        self.model = self.model.cuda()

        # Losses and optimizer
        self.mce_loss = nn.CrossEntropyLoss(ignore_index=-1)
        if 'bert' in args.optim:
            batch_per_epoch = len(self.train_tuple.loader)
            t_total = int(batch_per_epoch * args.epochs)
            print("Total Iters: %d" % t_total)
            from lxrt.optimization import BertAdam
            self.optim = BertAdam(list(self.model.parameters()),
                                  lr=args.lr,
                                  warmup=0.1,
                                  t_total=t_total)
        else:
            self.optim = args.optimizer(list(self.model.parameters()), args.lr)

        self.output = args.output
        os.makedirs(self.output, exist_ok=True)

    def train(self, train_tuple, eval_tuple):
        dset, loader, evaluator = train_tuple
        iter_wrapper = (lambda x: tqdm(x, total=len(loader))) if args.tqdm else (lambda x: x)

        best_valid = 0.
        for epoch in range(args.epochs):
            quesid2ans = {}
            for i, (ques_id, feats, boxes, sent, label) in iter_wrapper(enumerate(loader)):
                self.model.train()

                self.optim.zero_grad()
                feats, boxes, label = feats.cuda(), boxes.cuda(), label.cuda()
                logit = self.model(feats, boxes, sent)

                loss = self.mce_loss(logit, label)

                loss.backward()
                nn.utils.clip_grad_norm_(self.model.parameters(), 5.)
                self.optim.step()

                score, predict = logit.max(1)
                for qid, l in zip(ques_id, predict.cpu().numpy()):
                    quesid2ans[qid] = l

            log_str = "\nEpoch %d: Train %0.2f\n" % (epoch, evaluator.evaluate(quesid2ans) * 100.)

            if self.valid_tuple is not None:  # Do Validation
                valid_score = self.evaluate(eval_tuple)
                if valid_score > best_valid:
                    best_valid = valid_score
                    self.save("BEST")

                log_str += "Epoch %d: Valid %0.2f\n" % (epoch, valid_score * 100.) + \
                           "Epoch %d: Best %0.2f\n" % (epoch, best_valid * 100.)

            print(log_str, end='')

            with open(self.output + "/log.log", 'a') as f:
                f.write(log_str)
                f.flush()

        self.save("LAST")

    def predict(self, eval_tuple: DataTuple, dump=None):
        self.model.eval()
        dset, loader, evaluator = eval_tuple
        quesid2ans = {}
        for i, datum_tuple in enumerate(loader):
            ques_id, feats, boxes, sent = datum_tuple[:4]   # avoid handling target
            with torch.no_grad():
                feats, boxes = feats.cuda(), boxes.cuda()
                logit = self.model(feats, boxes, sent)
                score, predict = logit.max(1)
                for qid, l in zip(ques_id, predict.cpu().numpy()):
                    quesid2ans[qid] = l
        if dump is not None:
            evaluator.dump_result(quesid2ans, dump)
        return quesid2ans

    def evaluate(self, eval_tuple: DataTuple, dump=None):
        dset, loader, evaluator = eval_tuple
        quesid2ans = self.predict(eval_tuple, dump)
        return evaluator.evaluate(quesid2ans)

    def save(self, name):
        torch.save(self.model.state_dict(),
                   os.path.join(self.output, "%s.pth" % name))

    def load(self, path):
        print("Load model from %s" % path)
        state_dict = torch.load("%s.pth" % path)
        self.model.load_state_dict(state_dict)


if __name__ == "__main__":
    # Build Class
    nlvr2 = NLVR2()

    # Load Model
    if args.load is not None:
        nlvr2.load(args.load)

    # Test or Train
    if args.test is not None:
        args.fast = args.tiny = False       # Always loading all data in test
        if 'hidden' in args.test:
            nlvr2.predict(
                get_tuple(args.test, bs=args.batch_size,
                          shuffle=False, drop_last=False),
                dump=os.path.join(args.output, 'hidden_predict.csv')
            )
        elif 'test' in args.test or 'valid' in args.test:
            result = nlvr2.evaluate(
                get_tuple(args.test, bs=args.batch_size,
                          shuffle=False, drop_last=False),
                dump=os.path.join(args.output, '%s_predict.csv' % args.test)
            )
            print(result)
        else:
            assert False, "No such test option for %s" % args.test
    else:
        print('Splits in Train data:', nlvr2.train_tuple.dataset.splits)
        if nlvr2.valid_tuple is not None:
            print('Splits in Valid data:', nlvr2.valid_tuple.dataset.splits)
        else:
            print("DO NOT USE VALIDATION")
        nlvr2.train(nlvr2.train_tuple, nlvr2.valid_tuple)