File size: 7,790 Bytes
08d7644
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
# coding=utf-8
# Copyleft 2019 project LXRT.

import os
import collections

import torch
import torch.nn as nn
from torch.utils.data.dataloader import DataLoader
from tqdm import tqdm

from ..param import args
from ..pretrain.qa_answer_table import load_lxmert_qa
from .vqa_model import VQAModel
from .vqa_data import VQADataset, VQATorchDataset, VQAEvaluator

DataTuple = collections.namedtuple("DataTuple", 'dataset loader evaluator')


def get_data_tuple(splits: str, bs:int, shuffle=False, drop_last=False) -> DataTuple:
    dset = VQADataset(splits)
    tset = VQATorchDataset(dset)
    evaluator = VQAEvaluator(dset)
    data_loader = DataLoader(
        tset, batch_size=bs,
        shuffle=shuffle, num_workers=args.num_workers,
        drop_last=drop_last, pin_memory=True
    )

    return DataTuple(dataset=dset, loader=data_loader, evaluator=evaluator)


class VQA:
    def __init__(self):
        # Datasets
        self.train_tuple = get_data_tuple(
            args.train, bs=args.batch_size, shuffle=True, drop_last=True
        )
        if args.valid != "":
            self.valid_tuple = get_data_tuple(
                args.valid, bs=1024,
                shuffle=False, drop_last=False
            )
        else:
            self.valid_tuple = None
        
        # Model
        self.model = VQAModel(self.train_tuple.dataset.num_answers)

        # Load pre-trained weights
        if args.load_lxmert is not None:
            self.model.lxrt_encoder.load(args.load_lxmert)
        if args.load_lxmert_qa is not None:
            load_lxmert_qa(args.load_lxmert_qa, self.model,
                           label2ans=self.train_tuple.dataset.label2ans)
        
        # GPU options
        self.model = self.model.cuda()
        if args.multiGPU:
            self.model.lxrt_encoder.multi_gpu()

        # Loss and Optimizer
        self.bce_loss = nn.BCEWithLogitsLoss()
        if 'bert' in args.optim:
            batch_per_epoch = len(self.train_tuple.loader)
            t_total = int(batch_per_epoch * args.epochs)
            print("BertAdam Total Iters: %d" % t_total)
            from ..lxrt.optimization import BertAdam
            self.optim = BertAdam(list(self.model.parameters()),
                                  lr=args.lr,
                                  warmup=0.1,
                                  t_total=t_total)
        else:
            self.optim = args.optimizer(self.model.parameters(), args.lr)
        
        # Output Directory
        self.output = args.output
        os.makedirs(self.output, exist_ok=True)

    def train(self, train_tuple, eval_tuple):
        dset, loader, evaluator = train_tuple
        iter_wrapper = (lambda x: tqdm(x, total=len(loader))) if args.tqdm else (lambda x: x)

        best_valid = 0.
        for epoch in range(args.epochs):
            quesid2ans = {}
            for i, (ques_id, feats, boxes, sent, target) in iter_wrapper(enumerate(loader)):

                self.model.train()
                self.optim.zero_grad()

                feats, boxes, target = feats.cuda(), boxes.cuda(), target.cuda()
                logit = self.model(feats, boxes, sent)
                assert logit.dim() == target.dim() == 2
                loss = self.bce_loss(logit, target)
                loss = loss * logit.size(1)

                loss.backward()
                nn.utils.clip_grad_norm_(self.model.parameters(), 5.)
                self.optim.step()

                score, label = logit.max(1)
                for qid, l in zip(ques_id, label.cpu().numpy()):
                    ans = dset.label2ans[l]
                    quesid2ans[qid.item()] = ans

            log_str = "\nEpoch %d: Train %0.2f\n" % (epoch, evaluator.evaluate(quesid2ans) * 100.)

            if self.valid_tuple is not None:  # Do Validation
                valid_score = self.evaluate(eval_tuple)
                if valid_score > best_valid:
                    best_valid = valid_score
                    self.save("BEST")

                log_str += "Epoch %d: Valid %0.2f\n" % (epoch, valid_score * 100.) + \
                           "Epoch %d: Best %0.2f\n" % (epoch, best_valid * 100.)

            print(log_str, end='')

            with open(self.output + "/log.log", 'a') as f:
                f.write(log_str)
                f.flush()

        self.save("LAST")

    def predict(self, eval_tuple: DataTuple, dump=None):
        """
        Predict the answers to questions in a data split.

        :param eval_tuple: The data tuple to be evaluated.
        :param dump: The path of saved file to dump results.
        :return: A dict of question_id to answer.
        """
        self.model.eval()
        dset, loader, evaluator = eval_tuple
        quesid2ans = {}
        for i, datum_tuple in enumerate(loader):
            ques_id, feats, boxes, sent = datum_tuple[:4]   # Avoid seeing ground truth
            with torch.no_grad():
                feats, boxes = feats.cuda(), boxes.cuda()
                logit = self.model(feats, boxes, sent)
                score, label = logit.max(1)
                for qid, l in zip(ques_id, label.cpu().numpy()):
                    ans = dset.label2ans[l]
                    quesid2ans[qid.item()] = ans
        if dump is not None:
            evaluator.dump_result(quesid2ans, dump)
        return quesid2ans

    def evaluate(self, eval_tuple: DataTuple, dump=None):
        """Evaluate all data in data_tuple."""
        quesid2ans = self.predict(eval_tuple, dump)
        return eval_tuple.evaluator.evaluate(quesid2ans)

    @staticmethod
    def oracle_score(data_tuple):
        dset, loader, evaluator = data_tuple
        quesid2ans = {}
        for i, (ques_id, feats, boxes, sent, target) in enumerate(loader):
            _, label = target.max(1)
            for qid, l in zip(ques_id, label.cpu().numpy()):
                ans = dset.label2ans[l]
                quesid2ans[qid.item()] = ans
        return evaluator.evaluate(quesid2ans)

    def save(self, name):
        torch.save(self.model.state_dict(),
                   os.path.join(self.output, "%s.pth" % name))

    def load(self, path):
        print("Load model from %s" % path)
        state_dict = torch.load("%s.pth" % path)
        self.model.load_state_dict(state_dict)


if __name__ == "__main__":
    # Build Class
    vqa = VQA()

    # Load VQA model weights
    # Note: It is different from loading lxmert pre-trained weights.
    if args.load is not None:
        vqa.load(args.load)

    # Test or Train
    if args.test is not None:
        args.fast = args.tiny = False       # Always loading all data in test
        if 'test' in args.test:
            vqa.predict(
                get_data_tuple(args.test, bs=950,
                               shuffle=False, drop_last=False),
                dump=os.path.join(args.output, 'test_predict.json')
            )
        elif 'val' in args.test:    
            # Since part of valididation data are used in pre-training/fine-tuning,
            # only validate on the minival set.
            result = vqa.evaluate(
                get_data_tuple('minival', bs=950,
                               shuffle=False, drop_last=False),
                dump=os.path.join(args.output, 'minival_predict.json')
            )
            print(result)
        else:
            assert False, "No such test option for %s" % args.test
    else:
        print('Splits in Train data:', vqa.train_tuple.dataset.splits)
        if vqa.valid_tuple is not None:
            print('Splits in Valid data:', vqa.valid_tuple.dataset.splits)
            print("Valid Oracle: %0.2f" % (vqa.oracle_score(vqa.valid_tuple) * 100))
        else:
            print("DO NOT USE VALIDATION")
        vqa.train(vqa.train_tuple, vqa.valid_tuple)