File size: 5,761 Bytes
08d7644
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
# coding=utf-8
# Copyleft 2019 project LXRT.

import json
import os
import pickle

import numpy as np
import torch
from torch.utils.data import Dataset

from ..param import args
from ..utils import load_obj_tsv

# Load part of the dataset for fast checking.
# Notice that here is the number of images instead of the number of data,
# which means all related data to the images would be used.
TINY_IMG_NUM = 512
FAST_IMG_NUM = 5000

# The path to data and image features.
VQA_DATA_ROOT = 'data/vqa/'
MSCOCO_IMGFEAT_ROOT = 'data/mscoco_imgfeat/'
SPLIT2NAME = {
    'train': 'train2014',
    'valid': 'val2014',
    'minival': 'val2014',
    'nominival': 'val2014',
    'test': 'test2015',
}


class VQADataset:
    """
    A VQA data example in json file:
        {
            "answer_type": "other",
            "img_id": "COCO_train2014_000000458752",
            "label": {
                "net": 1
            },
            "question_id": 458752000,
            "question_type": "what is this",
            "sent": "What is this photo taken looking through?"
        }
    """
    def __init__(self, splits: str):
        self.name = splits
        self.splits = splits.split(',')

        # Loading datasets
        self.data = []
        for split in self.splits:
            self.data.extend(json.load(open("data/vqa/%s.json" % split)))
        print("Load %d data from split(s) %s." % (len(self.data), self.name))

        # Convert list to dict (for evaluation)
        self.id2datum = {
            datum['question_id']: datum
            for datum in self.data
        }

        # Answers
        self.ans2label = json.load(open("data/vqa/trainval_ans2label.json"))
        self.label2ans = json.load(open("data/vqa/trainval_label2ans.json"))
        assert len(self.ans2label) == len(self.label2ans)

    @property
    def num_answers(self):
        return len(self.ans2label)

    def __len__(self):
        return len(self.data)


"""
An example in obj36 tsv:
FIELDNAMES = ["img_id", "img_h", "img_w", "objects_id", "objects_conf",
              "attrs_id", "attrs_conf", "num_boxes", "boxes", "features"]
FIELDNAMES would be keys in the dict returned by load_obj_tsv.
"""
class VQATorchDataset(Dataset):
    def __init__(self, dataset: VQADataset):
        super().__init__()
        self.raw_dataset = dataset

        if args.tiny:
            topk = TINY_IMG_NUM
        elif args.fast:
            topk = FAST_IMG_NUM
        else:
            topk = None

        # Loading detection features to img_data
        img_data = []
        for split in dataset.splits:
            # Minival is 5K images in MS COCO, which is used in evaluating VQA/lxmert-pre-training.
            # It is saved as the top 5K features in val2014_***.tsv
            load_topk = 5000 if (split == 'minival' and topk is None) else topk
            img_data.extend(load_obj_tsv(
                os.path.join(MSCOCO_IMGFEAT_ROOT, '%s_obj36.tsv' % (SPLIT2NAME[split])),
                topk=load_topk))

        # Convert img list to dict
        self.imgid2img = {}
        for img_datum in img_data:
            self.imgid2img[img_datum['img_id']] = img_datum

        # Only kept the data with loaded image features
        self.data = []
        for datum in self.raw_dataset.data:
            if datum['img_id'] in self.imgid2img:
                self.data.append(datum)
        print("Use %d data in torch dataset" % (len(self.data)))
        print()

    def __len__(self):
        return len(self.data)

    def __getitem__(self, item: int):
        datum = self.data[item]

        img_id = datum['img_id']
        ques_id = datum['question_id']
        ques = datum['sent']

        # Get image info
        img_info = self.imgid2img[img_id]
        obj_num = img_info['num_boxes']
        feats = img_info['features'].copy()
        boxes = img_info['boxes'].copy()
        assert obj_num == len(boxes) == len(feats)

        # Normalize the boxes (to 0 ~ 1)
        img_h, img_w = img_info['img_h'], img_info['img_w']
        boxes = boxes.copy()
        boxes[:, (0, 2)] /= img_w
        boxes[:, (1, 3)] /= img_h
        np.testing.assert_array_less(boxes, 1+1e-5)
        np.testing.assert_array_less(-boxes, 0+1e-5)

        # Provide label (target)
        if 'label' in datum:
            label = datum['label']
            target = torch.zeros(self.raw_dataset.num_answers)
            for ans, score in label.items():
                target[self.raw_dataset.ans2label[ans]] = score
            return ques_id, feats, boxes, ques, target
        else:
            return ques_id, feats, boxes, ques


class VQAEvaluator:
    def __init__(self, dataset: VQADataset):
        self.dataset = dataset

    def evaluate(self, quesid2ans: dict):
        score = 0.
        for quesid, ans in quesid2ans.items():
            datum = self.dataset.id2datum[quesid]
            label = datum['label']
            if ans in label:
                score += label[ans]
        return score / len(quesid2ans)

    def dump_result(self, quesid2ans: dict, path):
        """
        Dump results to a json file, which could be submitted to the VQA online evaluation.
        VQA json file submission requirement:
            results = [result]
            result = {
                "question_id": int,
                "answer": str
            }

        :param quesid2ans: dict of quesid --> ans
        :param path: The desired path of saved file.
        """
        with open(path, 'w') as f:
            result = []
            for ques_id, ans in quesid2ans.items():
                result.append({
                    'question_id': ques_id,
                    'answer': ans
                })
            json.dump(result, f, indent=4, sort_keys=True)