File size: 4,769 Bytes
08d7644
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "loose-wrong",
   "metadata": {},
   "outputs": [
    {
     "ename": "ModuleNotFoundError",
     "evalue": "No module named 'src'",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[0;31mModuleNotFoundError\u001b[0m                       Traceback (most recent call last)",
      "\u001b[0;32m<ipython-input-7-b03239bcd702>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0mlxmert_lrp\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mLxmertForQuestionAnswering\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mLxmertForQuestionAnsweringLRP\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m      2\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0msrc\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtasks\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mvqa_data\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m      3\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0msrc\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmodeling_frcnn\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mGeneralizedRCNN\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m      4\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0msrc\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mvqa_utils\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mutils\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m      5\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0msrc\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mprocessing_image\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mPreprocess\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m/media/data2/hila_chefer/lxmert/lxmert/src/lxmert_lrp.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m     25\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mtorch\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mnn\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     26\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mtorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnn\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mCrossEntropyLoss\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mSmoothL1Loss\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 27\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0msrc\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlayers\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m     28\u001b[0m from transformers.file_utils import (\n\u001b[1;32m     29\u001b[0m     \u001b[0mModelOutput\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;31mModuleNotFoundError\u001b[0m: No module named 'src'"
     ]
    }
   ],
   "source": [
    "from lxmert_lrp import LxmertForQuestionAnswering as LxmertForQuestionAnsweringLRP\n",
    "from src.tasks import vqa_data\n",
    "from src.modeling_frcnn import GeneralizedRCNN\n",
    "import src.vqa_utils as utils\n",
    "from src.processing_image import Preprocess\n",
    "from transformers import LxmertTokenizer\n",
    "from src.huggingface_lxmert import LxmertForQuestionAnswering\n",
    "\n",
    "from tqdm import tqdm\n",
    "from src.ExplanationGenerator import GeneratorOurs, GeneratorBaselines\n",
    "import random\n",
    "import cv2\n",
    "\n",
    "COCO_VAL_PATH = '/media/data2/hila_chefer/env_MMF/datasets/coco/subset_val/images/val2014/'\n",
    "\n",
    "OBJ_URL = \"https://raw.githubusercontent.com/airsplay/py-bottom-up-attention/master/demo/data/genome/1600-400-20/objects_vocab.txt\"\n",
    "ATTR_URL = \"https://raw.githubusercontent.com/airsplay/py-bottom-up-attention/master/demo/data/genome/1600-400-20/attributes_vocab.txt\"\n",
    "VQA_URL = \"https://raw.githubusercontent.com/airsplay/lxmert/master/data/vqa/trainval_label2ans.json\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "emerging-trace",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "royal-small",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.7.9"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}