File size: 5,282 Bytes
08d7644
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
# coding=utf-8
# Copyright 2019 project LXRT.
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os

import torch
import torch.nn as nn

from ..lxrt.tokenization import BertTokenizer
from ..lxrt.modeling import LXRTFeatureExtraction as VisualBertForLXRFeature, VISUAL_CONFIG


class InputFeatures(object):
    """A single set of features of data."""

    def __init__(self, input_ids, input_mask, segment_ids):
        self.input_ids = input_ids
        self.input_mask = input_mask
        self.segment_ids = segment_ids


def convert_sents_to_features(sents, max_seq_length, tokenizer):
    """Loads a data file into a list of `InputBatch`s."""

    features = []
    for (i, sent) in enumerate(sents):
        tokens_a = tokenizer.tokenize(sent.strip())

        # Account for [CLS] and [SEP] with "- 2"
        if len(tokens_a) > max_seq_length - 2:
            tokens_a = tokens_a[:(max_seq_length - 2)]
        
        # Keep segment id which allows loading BERT-weights.
        tokens = ["[CLS]"] + tokens_a + ["[SEP]"]
        segment_ids = [0] * len(tokens)

        input_ids = tokenizer.convert_tokens_to_ids(tokens)

        # The mask has 1 for real tokens and 0 for padding tokens. Only real
        # tokens are attended to.
        input_mask = [1] * len(input_ids)

        # Zero-pad up to the sequence length.
        padding = [0] * (max_seq_length - len(input_ids))
        input_ids += padding
        input_mask += padding
        segment_ids += padding

        assert len(input_ids) == max_seq_length
        assert len(input_mask) == max_seq_length
        assert len(segment_ids) == max_seq_length

        features.append(
                InputFeatures(input_ids=input_ids,
                              input_mask=input_mask,
                              segment_ids=segment_ids))
    return features


def set_visual_config(args):
    VISUAL_CONFIG.l_layers = args.llayers
    VISUAL_CONFIG.x_layers = args.xlayers
    VISUAL_CONFIG.r_layers = args.rlayers


class LXRTEncoder(nn.Module):
    def __init__(self, args, max_seq_length, mode='x'):
        super().__init__()
        self.max_seq_length = max_seq_length
        set_visual_config(args)

        # Using the bert tokenizer
        self.tokenizer = BertTokenizer.from_pretrained(
            "bert-base-uncased",
            do_lower_case=True
        )

        # Build LXRT Model
        self.model = VisualBertForLXRFeature.from_pretrained(
            "bert-base-uncased",
            mode=mode
        )

        if args.from_scratch:
            print("initializing all the weights")
            self.model.apply(self.model.init_bert_weights)

    def multi_gpu(self):
        self.model = nn.DataParallel(self.model)

    @property
    def dim(self):
        return 768

    def forward(self, sents, feats, visual_attention_mask=None):
        train_features = convert_sents_to_features(
            sents, self.max_seq_length, self.tokenizer)

        input_ids = torch.tensor([f.input_ids for f in train_features], dtype=torch.long).cuda()
        input_mask = torch.tensor([f.input_mask for f in train_features], dtype=torch.long).cuda()
        segment_ids = torch.tensor([f.segment_ids for f in train_features], dtype=torch.long).cuda()

        output = self.model(input_ids, segment_ids, input_mask,
                            visual_feats=feats,
                            visual_attention_mask=visual_attention_mask)
        return output

    def save(self, path):
        torch.save(self.model.state_dict(),
                   os.path.join("%s_LXRT.pth" % path))

    def load(self, path):
        # Load state_dict from snapshot file
        print("Load lxmert pre-trained model from %s" % path)
        state_dict = torch.load("%s_LXRT.pth" % path)
        new_state_dict = {}
        for key, value in state_dict.items():
            if key.startswith("module."):
                new_state_dict[key[len("module."):]] = value
            else:
                new_state_dict[key] = value
        state_dict = new_state_dict

        # Print out the differences of pre-trained and model weights.
        load_keys = set(state_dict.keys())
        model_keys = set(self.model.state_dict().keys())
        print()
        print("Weights in loaded but not in model:")
        for key in sorted(load_keys.difference(model_keys)):
            print(key)
        print()
        print("Weights in model but not in loaded:")
        for key in sorted(model_keys.difference(load_keys)):
            print(key)
        print()

        # Load weights to model
        self.model.load_state_dict(state_dict, strict=False)