File size: 1,969 Bytes
08d7644
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
# coding=utf-8
# Copyleft 2019 Project LXRT

import sys
import csv
import base64
import time

import numpy as np

csv.field_size_limit(sys.maxsize)
FIELDNAMES = ["img_id", "img_h", "img_w", "objects_id", "objects_conf",
              "attrs_id", "attrs_conf", "num_boxes", "boxes", "features"]


def load_obj_tsv(fname, topk=None):
    """Load object features from tsv file.

    :param fname: The path to the tsv file.
    :param topk: Only load features for top K images (lines) in the tsv file.
        Will load all the features if topk is either -1 or None.
    :return: A list of image object features where each feature is a dict.
        See FILENAMES above for the keys in the feature dict.
    """
    data = []
    start_time = time.time()
    print("Start to load Faster-RCNN detected objects from %s" % fname)
    with open(fname) as f:
        reader = csv.DictReader(f, FIELDNAMES, delimiter="\t")
        for i, item in enumerate(reader):

            for key in ['img_h', 'img_w', 'num_boxes']:
                item[key] = int(item[key])
            
            boxes = item['num_boxes']
            decode_config = [
                ('objects_id', (boxes, ), np.int64),
                ('objects_conf', (boxes, ), np.float32),
                ('attrs_id', (boxes, ), np.int64),
                ('attrs_conf', (boxes, ), np.float32),
                ('boxes', (boxes, 4), np.float32),
                ('features', (boxes, -1), np.float32),
            ]
            for key, shape, dtype in decode_config:
                item[key] = np.frombuffer(base64.b64decode(item[key]), dtype=dtype)
                item[key] = item[key].reshape(shape)
                item[key].setflags(write=False)

            data.append(item)
            if topk is not None and len(data) == topk:
                break
    elapsed_time = time.time() - start_time
    print("Loaded %d images in file %s in %d seconds." % (len(data), fname, elapsed_time))
    return data