WwYc's picture
Upload 61 files
08d7644 verified
raw
history blame
1.22 kB
# coding=utf-8
# Copyleft 2019 project LXRT.
import torch.nn as nn
from param import args
from lxrt.entry import LXRTEncoder
from lxrt.modeling import BertLayerNorm, GeLU
# Max length including <bos> and <eos>
MAX_GQA_LENGTH = 20
class GQAModel(nn.Module):
def __init__(self, num_answers):
super().__init__()
self.lxrt_encoder = LXRTEncoder(
args,
max_seq_length=MAX_GQA_LENGTH
)
hid_dim = self.lxrt_encoder.dim
self.logit_fc = nn.Sequential(
nn.Linear(hid_dim, hid_dim * 2),
GeLU(),
BertLayerNorm(hid_dim * 2, eps=1e-12),
nn.Linear(hid_dim * 2, num_answers)
)
self.logit_fc.apply(self.lxrt_encoder.model.init_bert_weights)
def forward(self, feat, pos, sent):
"""
b -- batch_size, o -- object_number, f -- visual_feature_size
:param feat: (b, o, f)
:param pos: (b, o, 4)
:param sent: (b,) Type -- list of string
:param leng: (b,) Type -- int numpy array
:return: (b, num_answer) The logit of each answers.
"""
x = self.lxrt_encoder(sent, (feat, pos))
logit = self.logit_fc(x)
return logit