Spaces:
Sleeping
Sleeping
# coding=utf-8 | |
# Copyleft 2019 project LXRT. | |
import torch.nn as nn | |
from lxrt.modeling import GeLU, BertLayerNorm | |
from lxrt.entry import LXRTEncoder | |
from param import args | |
class NLVR2Model(nn.Module): | |
def __init__(self): | |
super().__init__() | |
self.lxrt_encoder = LXRTEncoder( | |
args, | |
max_seq_length=20 | |
) | |
self.hid_dim = hid_dim = self.lxrt_encoder.dim | |
self.logit_fc = nn.Sequential( | |
nn.Linear(hid_dim * 2, hid_dim * 2), | |
GeLU(), | |
BertLayerNorm(hid_dim * 2, eps=1e-12), | |
nn.Linear(hid_dim * 2, 2) | |
) | |
self.logit_fc.apply(self.lxrt_encoder.model.init_bert_weights) | |
def forward(self, feat, pos, sent): | |
""" | |
:param feat: b, 2, o, f | |
:param pos: b, 2, o, 4 | |
:param sent: b, (string) | |
:param leng: b, (numpy, int) | |
:return: | |
""" | |
# Pairing images and sentences: | |
# The input of NLVR2 is two images and one sentence. In batch level, they are saved as | |
# [ [img0_0, img0_1], [img1_0, img1_1], ...] and [sent0, sent1, ...] | |
# Here, we flat them to | |
# feat/pos = [ img0_0, img0_1, img1_0, img1_1, ...] | |
# sent = [ sent0, sent0, sent1, sent1, ...] | |
sent = sum(zip(sent, sent), ()) | |
batch_size, img_num, obj_num, feat_size = feat.size() | |
assert img_num == 2 and obj_num == 36 and feat_size == 2048 | |
feat = feat.view(batch_size * 2, obj_num, feat_size) | |
pos = pos.view(batch_size * 2, obj_num, 4) | |
# Extract feature --> Concat | |
x = self.lxrt_encoder(sent, (feat, pos)) | |
x = x.view(-1, self.hid_dim*2) | |
# Compute logit of answers | |
logit = self.logit_fc(x) | |
return logit | |