Spaces:
Sleeping
Sleeping
# coding=utf-8 | |
# Copyleft 2019 project LXRT. | |
import torch.nn as nn | |
from ..param import args | |
from ..lxrt.entry import LXRTEncoder | |
from ..lxrt.modeling import BertLayerNorm, GeLU | |
from transformers import AutoTokenizer, AutoModelForQuestionAnswering | |
# Max length including <bos> and <eos> | |
MAX_VQA_LENGTH = 20 | |
class VQAModel(nn.Module): | |
def __init__(self, num_answers): | |
super().__init__() | |
# # Build LXRT encoder | |
# self.lxrt_encoder = LXRTEncoder( | |
# args, | |
# max_seq_length=MAX_VQA_LENGTH | |
# ) | |
# hid_dim = self.lxrt_encoder.dim | |
# | |
# # VQA Answer heads | |
# self.logit_fc = nn.Sequential( | |
# nn.Linear(hid_dim, hid_dim * 2), | |
# GeLU(), | |
# BertLayerNorm(hid_dim * 2, eps=1e-12), | |
# nn.Linear(hid_dim * 2, num_answers) | |
# ) | |
# self.logit_fc.apply(self.lxrt_encoder.model.init_bert_weights) | |
self.tokenizer = AutoTokenizer.from_pretrained("unc-nlp/lxmert-vqa-uncased") | |
self.model = AutoModelForQuestionAnswering.from_pretrained("unc-nlp/lxmert-vqa-uncased") | |
def forward(self, feat, pos, sent): | |
""" | |
b -- batch_size, o -- object_number, f -- visual_feature_size | |
:param feat: (b, o, f) | |
:param pos: (b, o, 4) | |
:param sent: (b,) Type -- list of string | |
:param leng: (b,) Type -- int numpy array | |
:return: (b, num_answer) The logit of each answers. | |
""" | |
return self.model(sent, feat, pos) | |