Spaces:
Sleeping
Sleeping
# coding=utf-8 | |
# Copyright 2019 project LXRT. | |
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. | |
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""PyTorch LXRT model.""" | |
import copy | |
import json | |
import logging | |
import math | |
import os | |
import shutil | |
import tarfile | |
import tempfile | |
import sys | |
from io import open | |
import torch | |
from torch import nn | |
from torch.nn import CrossEntropyLoss, SmoothL1Loss | |
from .file_utils import cached_path | |
logger = logging.getLogger(__name__) | |
PRETRAINED_MODEL_ARCHIVE_MAP = { | |
'bert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased.tar.gz", | |
'bert-large-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased.tar.gz", | |
'bert-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased.tar.gz", | |
'bert-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased.tar.gz", | |
'bert-base-multilingual-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased.tar.gz", | |
'bert-base-multilingual-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased.tar.gz", | |
'bert-base-chinese': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese.tar.gz", | |
} | |
CONFIG_NAME = 'bert_config.json' | |
WEIGHTS_NAME = 'pytorch_model.bin' | |
TF_WEIGHTS_NAME = 'model.ckpt' | |
def load_tf_weights_in_bert(model, tf_checkpoint_path): | |
""" Load tf checkpoints in a pytorch model | |
""" | |
try: | |
import re | |
import numpy as np | |
import tensorflow as tf | |
except Importtokenization: | |
print("Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see " | |
"https://www.tensorflow.org/install/ for installation instructions.") | |
raise | |
tf_path = os.path.abspath(tf_checkpoint_path) | |
print("Converting TensorFlow checkpoint from {}".format(tf_path)) | |
# Load weights from TF model | |
init_vars = tf.train.list_variables(tf_path) | |
names = [] | |
arrays = [] | |
for name, shape in init_vars: | |
print("Loading TF weight {} with shape {}".format(name, shape)) | |
array = tf.train.load_variable(tf_path, name) | |
names.append(name) | |
arrays.append(array) | |
for name, array in zip(names, arrays): | |
name = name.split('/') | |
# adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v | |
# which are not required for using pretrained model | |
if any(n in ["adam_v", "adam_m"] for n in name): | |
print("Skipping {}".format("/".join(name))) | |
continue | |
pointer = model | |
for m_name in name: | |
if re.fullmatch(r'[A-Za-z]+_\d+', m_name): | |
l = re.split(r'_(\d+)', m_name) | |
else: | |
l = [m_name] | |
if l[0] == 'kernel' or l[0] == 'gamma': | |
pointer = getattr(pointer, 'weight') | |
elif l[0] == 'output_bias' or l[0] == 'beta': | |
pointer = getattr(pointer, 'bias') | |
elif l[0] == 'output_weights': | |
pointer = getattr(pointer, 'weight') | |
else: | |
pointer = getattr(pointer, l[0]) | |
if len(l) >= 2: | |
num = int(l[1]) | |
pointer = pointer[num] | |
if m_name[-11:] == '_embeddings': | |
pointer = getattr(pointer, 'weight') | |
elif m_name == 'kernel': | |
array = np.transpose(array) | |
try: | |
assert pointer.shape == array.shape | |
except AssertionError as e: | |
e.args += (pointer.shape, array.shape) | |
raise | |
print("Initialize PyTorch weight {}".format(name)) | |
pointer.data = torch.from_numpy(array) | |
return model | |
def gelu(x): | |
"""Implementation of the gelu activation function. | |
For information: OpenAI GPT's gelu is slightly different (and gives slightly different results): | |
0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))) | |
Also see https://arxiv.org/abs/1606.08415 | |
""" | |
return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0))) | |
class GeLU(nn.Module): | |
"""Implementation of the gelu activation function. | |
For information: OpenAI GPT's gelu is slightly different (and gives slightly different results): | |
0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))) | |
Also see https://arxiv.org/abs/1606.08415 | |
""" | |
def __init__(self): | |
super().__init__() | |
def forward(self, x): | |
return gelu(x) | |
def swish(x): | |
return x * torch.sigmoid(x) | |
ACT2FN = {"gelu": gelu, "relu": torch.nn.functional.relu, "swish": swish} | |
class VisualConfig(object): | |
VISUAL_LOSSES = ['obj', 'attr', 'feat'] | |
def __init__(self, | |
l_layers=12, | |
x_layers=5, | |
r_layers=0): | |
self.l_layers = l_layers | |
self.x_layers = x_layers | |
self.r_layers = r_layers | |
self.visual_feat_dim = 2048 | |
self.visual_pos_dim = 4 | |
self.obj_id_num = 1600 | |
self.attr_id_num = 400 | |
self.visual_losses = self.VISUAL_LOSSES | |
self.visual_loss_config = { | |
'obj': (self.obj_id_num, 'ce', (-1,), 1/0.15), | |
'attr': (self.attr_id_num, 'ce', (-1,), 1/0.15), | |
'feat': (2048, 'l2', (-1, 2048), 1/0.15), | |
} | |
def set_visual_dims(self, feat_dim, pos_dim): | |
self.visual_feat_dim = feat_dim | |
self.visual_pos_dim = pos_dim | |
VISUAL_CONFIG = VisualConfig() | |
class BertConfig(object): | |
"""Configuration class to store the configuration of a `BertModel`. | |
""" | |
def __init__(self, | |
vocab_size_or_config_json_file, | |
hidden_size=768, | |
num_hidden_layers=12, | |
num_attention_heads=12, | |
intermediate_size=3072, | |
hidden_act="gelu", | |
hidden_dropout_prob=0.1, | |
attention_probs_dropout_prob=0.1, | |
max_position_embeddings=512, | |
type_vocab_size=2, | |
initializer_range=0.02): | |
"""Constructs BertConfig. | |
Args: | |
vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `BertModel`. | |
hidden_size: Size of the encoder layers and the pooler layer. | |
num_hidden_layers: Number of hidden layers in the Transformer encoder. | |
num_attention_heads: Number of attention heads for each attention layer in | |
the Transformer encoder. | |
intermediate_size: The size of the "intermediate" (i.e., feed-forward) | |
layer in the Transformer encoder. | |
hidden_act: The non-linear activation function (function or string) in the | |
encoder and pooler. If string, "gelu", "relu" and "swish" are supported. | |
hidden_dropout_prob: The dropout probabilitiy for all fully connected | |
layers in the embeddings, encoder, and pooler. | |
attention_probs_dropout_prob: The dropout ratio for the attention | |
probabilities. | |
max_position_embeddings: The maximum sequence length that this model might | |
ever be used with. Typically set this to something large just in case | |
(e.g., 512 or 1024 or 2048). | |
type_vocab_size: The vocabulary size of the `token_type_ids` passed into | |
`BertModel`. | |
initializer_range: The sttdev of the truncated_normal_initializer for | |
initializing all weight matrices. | |
""" | |
if isinstance(vocab_size_or_config_json_file, str) or (sys.version_info[0] == 2 | |
and isinstance(vocab_size_or_config_json_file, unicode)): | |
with open(vocab_size_or_config_json_file, "r", encoding='utf-8') as reader: | |
json_config = json.loads(reader.read()) | |
for key, value in json_config.items(): | |
self.__dict__[key] = value | |
elif isinstance(vocab_size_or_config_json_file, int): | |
self.vocab_size = vocab_size_or_config_json_file | |
self.hidden_size = hidden_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.hidden_act = hidden_act | |
self.intermediate_size = intermediate_size | |
self.hidden_dropout_prob = hidden_dropout_prob | |
self.attention_probs_dropout_prob = attention_probs_dropout_prob | |
self.max_position_embeddings = max_position_embeddings | |
self.type_vocab_size = type_vocab_size | |
self.initializer_range = initializer_range | |
else: | |
raise ValueError("First argument must be either a vocabulary size (int)" | |
"or the path to a pretrained model config file (str)") | |
def from_dict(cls, json_object): | |
"""Constructs a `BertConfig` from a Python dictionary of parameters.""" | |
config = BertConfig(vocab_size_or_config_json_file=-1) | |
for key, value in json_object.items(): | |
config.__dict__[key] = value | |
return config | |
def from_json_file(cls, json_file): | |
"""Constructs a `BertConfig` from a json file of parameters.""" | |
with open(json_file, "r", encoding='utf-8') as reader: | |
text = reader.read() | |
return cls.from_dict(json.loads(text)) | |
def __repr__(self): | |
return str(self.to_json_string()) | |
def to_dict(self): | |
"""Serializes this instance to a Python dictionary.""" | |
output = copy.deepcopy(self.__dict__) | |
return output | |
def to_json_string(self): | |
"""Serializes this instance to a JSON string.""" | |
return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n" | |
BertLayerNorm = torch.nn.LayerNorm | |
class BertEmbeddings(nn.Module): | |
"""Construct the embeddings from word, position and token_type embeddings. | |
""" | |
def __init__(self, config): | |
super(BertEmbeddings, self).__init__() | |
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=0) | |
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size, padding_idx=0) | |
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size, padding_idx=0) | |
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load | |
# any TensorFlow checkpoint file | |
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-12) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
def forward(self, input_ids, token_type_ids=None): | |
seq_length = input_ids.size(1) | |
position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device) | |
position_ids = position_ids.unsqueeze(0).expand_as(input_ids) | |
if token_type_ids is None: | |
token_type_ids = torch.zeros_like(input_ids) | |
words_embeddings = self.word_embeddings(input_ids) | |
position_embeddings = self.position_embeddings(position_ids) | |
token_type_embeddings = self.token_type_embeddings(token_type_ids) | |
embeddings = words_embeddings + position_embeddings + token_type_embeddings | |
embeddings = self.LayerNorm(embeddings) | |
embeddings = self.dropout(embeddings) | |
return embeddings | |
class BertAttention(nn.Module): | |
def __init__(self, config, ctx_dim=None): | |
super().__init__() | |
if config.hidden_size % config.num_attention_heads != 0: | |
raise ValueError( | |
"The hidden size (%d) is not a multiple of the number of attention " | |
"heads (%d)" % (config.hidden_size, config.num_attention_heads)) | |
self.num_attention_heads = config.num_attention_heads | |
self.attention_head_size = int(config.hidden_size / config.num_attention_heads) | |
self.all_head_size = self.num_attention_heads * self.attention_head_size | |
# visual_dim = 2048 | |
if ctx_dim is None: | |
ctx_dim =config.hidden_size | |
self.query = nn.Linear(config.hidden_size, self.all_head_size) | |
self.key = nn.Linear(ctx_dim, self.all_head_size) | |
self.value = nn.Linear(ctx_dim, self.all_head_size) | |
self.dropout = nn.Dropout(config.attention_probs_dropout_prob) | |
def transpose_for_scores(self, x): | |
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) | |
x = x.view(*new_x_shape) | |
return x.permute(0, 2, 1, 3) | |
def forward(self, hidden_states, context, attention_mask=None): | |
mixed_query_layer = self.query(hidden_states) | |
mixed_key_layer = self.key(context) | |
mixed_value_layer = self.value(context) | |
query_layer = self.transpose_for_scores(mixed_query_layer) | |
key_layer = self.transpose_for_scores(mixed_key_layer) | |
value_layer = self.transpose_for_scores(mixed_value_layer) | |
# Take the dot product between "query" and "key" to get the raw attention scores. | |
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) | |
attention_scores = attention_scores / math.sqrt(self.attention_head_size) | |
# Apply the attention mask is (precomputed for all layers in BertModel forward() function) | |
if attention_mask is not None: | |
attention_scores = attention_scores + attention_mask | |
# Normalize the attention scores to probabilities. | |
attention_probs = nn.Softmax(dim=-1)(attention_scores) | |
# This is actually dropping out entire tokens to attend to, which might | |
# seem a bit unusual, but is taken from the original Transformer paper. | |
attention_probs = self.dropout(attention_probs) | |
context_layer = torch.matmul(attention_probs, value_layer) | |
context_layer = context_layer.permute(0, 2, 1, 3).contiguous() | |
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) | |
context_layer = context_layer.view(*new_context_layer_shape) | |
return context_layer | |
class BertAttOutput(nn.Module): | |
def __init__(self, config): | |
super(BertAttOutput, self).__init__() | |
self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-12) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
def forward(self, hidden_states, input_tensor): | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
hidden_states = self.LayerNorm(hidden_states + input_tensor) | |
return hidden_states | |
class BertCrossattLayer(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.att = BertAttention(config) | |
self.output = BertAttOutput(config) | |
def forward(self, input_tensor, ctx_tensor, ctx_att_mask=None): | |
output = self.att(input_tensor, ctx_tensor, ctx_att_mask) | |
attention_output = self.output(output, input_tensor) | |
return attention_output | |
class BertSelfattLayer(nn.Module): | |
def __init__(self, config): | |
super(BertSelfattLayer, self).__init__() | |
self.self = BertAttention(config) | |
self.output = BertAttOutput(config) | |
def forward(self, input_tensor, attention_mask): | |
# Self attention attends to itself, thus keys and querys are the same (input_tensor). | |
self_output = self.self(input_tensor, input_tensor, attention_mask) | |
attention_output = self.output(self_output, input_tensor) | |
return attention_output | |
class BertIntermediate(nn.Module): | |
def __init__(self, config): | |
super(BertIntermediate, self).__init__() | |
self.dense = nn.Linear(config.hidden_size, config.intermediate_size) | |
if isinstance(config.hidden_act, str) or (sys.version_info[0] == 2 and isinstance(config.hidden_act, unicode)): | |
self.intermediate_act_fn = ACT2FN[config.hidden_act] | |
else: | |
self.intermediate_act_fn = config.hidden_act | |
def forward(self, hidden_states): | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.intermediate_act_fn(hidden_states) | |
return hidden_states | |
class BertOutput(nn.Module): | |
def __init__(self, config): | |
super(BertOutput, self).__init__() | |
self.dense = nn.Linear(config.intermediate_size, config.hidden_size) | |
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-12) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
def forward(self, hidden_states, input_tensor): | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
hidden_states = self.LayerNorm(hidden_states + input_tensor) | |
return hidden_states | |
class BertLayer(nn.Module): | |
def __init__(self, config): | |
super(BertLayer, self).__init__() | |
self.attention = BertSelfattLayer(config) | |
self.intermediate = BertIntermediate(config) | |
self.output = BertOutput(config) | |
def forward(self, hidden_states, attention_mask): | |
attention_output = self.attention(hidden_states, attention_mask) | |
intermediate_output = self.intermediate(attention_output) | |
layer_output = self.output(intermediate_output, attention_output) | |
return layer_output | |
""" | |
--------------------------------------------------------------------------------------- | |
Above modules are copied from BERT (pytorch-transformer) with modifications. | |
--------------------------------------------------------------------------------------- | |
""" | |
class LXRTXLayer(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
# The cross-attention Layer | |
self.visual_attention = BertCrossattLayer(config) | |
# Self-attention Layers | |
self.lang_self_att = BertSelfattLayer(config) | |
self.visn_self_att = BertSelfattLayer(config) | |
# Intermediate and Output Layers (FFNs) | |
self.lang_inter = BertIntermediate(config) | |
self.lang_output = BertOutput(config) | |
self.visn_inter = BertIntermediate(config) | |
self.visn_output = BertOutput(config) | |
def cross_att(self, lang_input, lang_attention_mask, visn_input, visn_attention_mask): | |
# Cross Attention | |
lang_att_output = self.visual_attention(lang_input, visn_input, ctx_att_mask=visn_attention_mask) | |
visn_att_output = self.visual_attention(visn_input, lang_input, ctx_att_mask=lang_attention_mask) | |
return lang_att_output, visn_att_output | |
def self_att(self, lang_input, lang_attention_mask, visn_input, visn_attention_mask): | |
# Self Attention | |
lang_att_output = self.lang_self_att(lang_input, lang_attention_mask) | |
visn_att_output = self.visn_self_att(visn_input, visn_attention_mask) | |
return lang_att_output, visn_att_output | |
def output_fc(self, lang_input, visn_input): | |
# FC layers | |
lang_inter_output = self.lang_inter(lang_input) | |
visn_inter_output = self.visn_inter(visn_input) | |
# Layer output | |
lang_output = self.lang_output(lang_inter_output, lang_input) | |
visn_output = self.visn_output(visn_inter_output, visn_input) | |
return lang_output, visn_output | |
def forward(self, lang_feats, lang_attention_mask, | |
visn_feats, visn_attention_mask): | |
lang_att_output = lang_feats | |
visn_att_output = visn_feats | |
lang_att_output, visn_att_output = self.cross_att(lang_att_output, lang_attention_mask, | |
visn_att_output, visn_attention_mask) | |
lang_att_output, visn_att_output = self.self_att(lang_att_output, lang_attention_mask, | |
visn_att_output, visn_attention_mask) | |
lang_output, visn_output = self.output_fc(lang_att_output, visn_att_output) | |
return lang_output, visn_output | |
class VisualFeatEncoder(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
feat_dim = VISUAL_CONFIG.visual_feat_dim | |
pos_dim = VISUAL_CONFIG.visual_pos_dim | |
# Object feature encoding | |
self.visn_fc = nn.Linear(feat_dim, config.hidden_size) | |
self.visn_layer_norm = BertLayerNorm(config.hidden_size, eps=1e-12) | |
# Box position encoding | |
self.box_fc = nn.Linear(pos_dim, config.hidden_size) | |
self.box_layer_norm = BertLayerNorm(config.hidden_size, eps=1e-12) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
def forward(self, visn_input): | |
feats, boxes = visn_input | |
x = self.visn_fc(feats) | |
x = self.visn_layer_norm(x) | |
y = self.box_fc(boxes) | |
y = self.box_layer_norm(y) | |
output = (x + y) / 2 | |
output = self.dropout(output) | |
return output | |
class LXRTEncoder(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
# Obj-level image embedding layer | |
self.visn_fc = VisualFeatEncoder(config) | |
# Number of layers | |
self.num_l_layers = VISUAL_CONFIG.l_layers | |
self.num_x_layers = VISUAL_CONFIG.x_layers | |
self.num_r_layers = VISUAL_CONFIG.r_layers | |
print("LXRT encoder with %d l_layers, %d x_layers, and %d r_layers." % | |
(self.num_l_layers, self.num_x_layers, self.num_r_layers)) | |
# Layers | |
# Using self.layer instead of self.l_layer to support loading BERT weights. | |
self.layer = nn.ModuleList( | |
[BertLayer(config) for _ in range(self.num_l_layers)] | |
) | |
self.x_layers = nn.ModuleList( | |
[LXRTXLayer(config) for _ in range(self.num_x_layers)] | |
) | |
self.r_layers = nn.ModuleList( | |
[BertLayer(config) for _ in range(self.num_r_layers)] | |
) | |
def forward(self, lang_feats, lang_attention_mask, | |
visn_feats, visn_attention_mask=None): | |
# Run visual embedding layer | |
# Note: Word embedding layer was executed outside this module. | |
# Keep this design to allow loading BERT weights. | |
visn_feats = self.visn_fc(visn_feats) | |
# Run language layers | |
for layer_module in self.layer: | |
lang_feats = layer_module(lang_feats, lang_attention_mask) | |
# Run relational layers | |
for layer_module in self.r_layers: | |
visn_feats = layer_module(visn_feats, visn_attention_mask) | |
# Run cross-modality layers | |
for layer_module in self.x_layers: | |
lang_feats, visn_feats = layer_module(lang_feats, lang_attention_mask, | |
visn_feats, visn_attention_mask) | |
return lang_feats, visn_feats | |
class BertPooler(nn.Module): | |
def __init__(self, config): | |
super(BertPooler, self).__init__() | |
self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
self.activation = nn.Tanh() | |
def forward(self, hidden_states): | |
# We "pool" the model by simply taking the hidden state corresponding | |
# to the first token. | |
first_token_tensor = hidden_states[:, 0] | |
pooled_output = self.dense(first_token_tensor) | |
pooled_output = self.activation(pooled_output) | |
return pooled_output | |
class BertPredictionHeadTransform(nn.Module): | |
def __init__(self, config): | |
super(BertPredictionHeadTransform, self).__init__() | |
self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
if isinstance(config.hidden_act, str) or (sys.version_info[0] == 2 and isinstance(config.hidden_act, unicode)): | |
self.transform_act_fn = ACT2FN[config.hidden_act] | |
else: | |
self.transform_act_fn = config.hidden_act | |
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-12) | |
def forward(self, hidden_states): | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.transform_act_fn(hidden_states) | |
hidden_states = self.LayerNorm(hidden_states) | |
return hidden_states | |
class BertLMPredictionHead(nn.Module): | |
def __init__(self, config, bert_model_embedding_weights): | |
super(BertLMPredictionHead, self).__init__() | |
self.transform = BertPredictionHeadTransform(config) | |
# The output weights are the same as the input embeddings, but there is | |
# an output-only bias for each token. | |
self.decoder = nn.Linear(bert_model_embedding_weights.size(1), | |
bert_model_embedding_weights.size(0), | |
bias=False) | |
self.decoder.weight = bert_model_embedding_weights | |
self.bias = nn.Parameter(torch.zeros(bert_model_embedding_weights.size(0))) | |
def forward(self, hidden_states): | |
hidden_states = self.transform(hidden_states) | |
hidden_states = self.decoder(hidden_states) + self.bias | |
return hidden_states | |
class BertVisualAnswerHead(nn.Module): | |
def __init__(self, config, num_answers): | |
super().__init__() | |
hid_dim = config.hidden_size | |
self.logit_fc = nn.Sequential( | |
nn.Linear(hid_dim, hid_dim * 2), | |
GeLU(), | |
BertLayerNorm(hid_dim * 2, eps=1e-12), | |
nn.Linear(hid_dim * 2, num_answers) | |
) | |
def forward(self, hidden_states): | |
return self.logit_fc(hidden_states) | |
class BertVisualObjHead(nn.Module): | |
def __init__(self, config, visual_losses): | |
super().__init__() | |
self.transform = BertPredictionHeadTransform(config) | |
# Decide the use of visual losses | |
visual_losses = visual_losses.split(",") | |
for loss in visual_losses: | |
assert loss in VISUAL_CONFIG.VISUAL_LOSSES | |
self.visual_losses = visual_losses | |
# The output weights are the same as the input embeddings, but there is | |
# an output-only bias for each token. | |
self.decoder_dict = nn.ModuleDict({ | |
key: nn.Linear(config.hidden_size, VISUAL_CONFIG.visual_loss_config[key][0]) | |
for key in self.visual_losses | |
}) | |
def forward(self, hidden_states): | |
hidden_states = self.transform(hidden_states) | |
output = {} | |
for key in self.visual_losses: | |
output[key] = self.decoder_dict[key](hidden_states) | |
return output | |
class BertPreTrainingHeads(nn.Module): | |
def __init__(self, config, bert_model_embedding_weights): | |
super(BertPreTrainingHeads, self).__init__() | |
self.predictions = BertLMPredictionHead(config, bert_model_embedding_weights) | |
self.seq_relationship = nn.Linear(config.hidden_size, 2) | |
def forward(self, sequence_output, pooled_output): | |
prediction_scores = self.predictions(sequence_output) | |
seq_relationship_score = self.seq_relationship(pooled_output) | |
return prediction_scores, seq_relationship_score | |
class BertPreTrainedModel(nn.Module): | |
""" An abstract class to handle weights initialization and | |
a simple interface for dowloading and loading pretrained models. | |
""" | |
def __init__(self, config, *inputs, **kwargs): | |
super(BertPreTrainedModel, self).__init__() | |
if not isinstance(config, BertConfig): | |
raise ValueError( | |
"Parameter config in `{}(config)` should be an instance of class `BertConfig`. " | |
"To create a model from a Google pretrained model use " | |
"`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format( | |
self.__class__.__name__, self.__class__.__name__ | |
)) | |
self.config = config | |
def init_bert_weights(self, module): | |
""" Initialize the weights. | |
""" | |
if isinstance(module, (nn.Linear, nn.Embedding)): | |
# Slightly different from the TF version which uses truncated_normal for initialization | |
# cf https://github.com/pytorch/pytorch/pull/5617 | |
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
elif isinstance(module, BertLayerNorm): | |
module.bias.data.zero_() | |
module.weight.data.fill_(1.0) | |
if isinstance(module, nn.Linear) and module.bias is not None: | |
module.bias.data.zero_() | |
def from_pretrained(cls, pretrained_model_name_or_path, state_dict=None, cache_dir=None, | |
from_tf=False, *inputs, **kwargs): | |
""" | |
Instantiate a BertPreTrainedModel from a pre-trained model file or a pytorch state dict. | |
Download and cache the pre-trained model file if needed. | |
Params: | |
pretrained_model_name_or_path: either: | |
- a str with the name of a pre-trained model to load selected in the list of: | |
. `bert-base-uncased` | |
. `bert-large-uncased` | |
. `bert-base-cased` | |
. `bert-large-cased` | |
. `bert-base-multilingual-uncased` | |
. `bert-base-multilingual-cased` | |
. `bert-base-chinese` | |
- a path or url to a pretrained model archive containing: | |
. `bert_config.json` a configuration file for the model | |
. `pytorch_model.bin` a PyTorch dump of a BertForPreTraining instance | |
- a path or url to a pretrained model archive containing: | |
. `bert_config.json` a configuration file for the model | |
. `model.chkpt` a TensorFlow checkpoint | |
from_tf: should we load the weights from a locally saved TensorFlow checkpoint | |
cache_dir: an optional path to a folder in which the pre-trained models will be cached. | |
state_dict: an optional state dictionnary (collections.OrderedDict object) to use instead of Google pre-trained models | |
*inputs, **kwargs: additional input for the specific Bert class | |
(ex: num_labels for BertForSequenceClassification) | |
""" | |
if pretrained_model_name_or_path in PRETRAINED_MODEL_ARCHIVE_MAP: | |
archive_file = PRETRAINED_MODEL_ARCHIVE_MAP[pretrained_model_name_or_path] | |
else: | |
archive_file = pretrained_model_name_or_path | |
# redirect to the cache, if necessary | |
try: | |
resolved_archive_file = cached_path(archive_file, cache_dir=cache_dir) | |
except EnvironmentError: | |
if pretrained_model_name_or_path == 'bert-base-uncased': | |
try: | |
print("The BERT-weight-downloading query to AWS was time-out;" | |
"trying to download from UNC servers") | |
archive_file = "https://nlp.cs.unc.edu/data/bert/bert-base-uncased.tar.gz" | |
resolved_archive_file = cached_path(archive_file, cache_dir=cache_dir) | |
except EnvironmentError: | |
print("The weight-downloading still crashed with link: %s, " | |
"please check your network connection" % archive_file) | |
return None | |
else: | |
logger.error( | |
"Model name '{}' was not found in model name list ({}). " | |
"We assumed '{}' was a path or url but couldn't find any file " | |
"associated to this path or url.".format( | |
pretrained_model_name_or_path, | |
', '.join(PRETRAINED_MODEL_ARCHIVE_MAP.keys()), | |
archive_file)) | |
if resolved_archive_file == archive_file: | |
logger.info("loading archive file {}".format(archive_file)) | |
else: | |
logger.info("loading archive file {} from cache at {}".format( | |
archive_file, resolved_archive_file)) | |
tempdir = None | |
if os.path.isdir(resolved_archive_file) or from_tf: | |
serialization_dir = resolved_archive_file | |
else: | |
# Extract archive to temp dir | |
tempdir = tempfile.mkdtemp() | |
logger.info("extracting archive file {} to temp dir {}".format( | |
resolved_archive_file, tempdir)) | |
with tarfile.open(resolved_archive_file, 'r:gz') as archive: | |
archive.extractall(tempdir) | |
serialization_dir = tempdir | |
# Load config | |
config_file = os.path.join(serialization_dir, CONFIG_NAME) | |
config = BertConfig.from_json_file(config_file) | |
logger.info("Model config {}".format(config)) | |
# Instantiate model. | |
model = cls(config, *inputs, **kwargs) | |
if state_dict is None and not from_tf: | |
weights_path = os.path.join(serialization_dir, WEIGHTS_NAME) | |
state_dict = torch.load(weights_path, map_location='cpu' if not torch.cuda.is_available() else None) | |
if tempdir: | |
# Clean up temp dir | |
shutil.rmtree(tempdir) | |
if from_tf: | |
# Directly load from a TensorFlow checkpoint | |
weights_path = os.path.join(serialization_dir, TF_WEIGHTS_NAME) | |
return load_tf_weights_in_bert(model, weights_path) | |
# Load from a PyTorch state_dict | |
old_keys = [] | |
new_keys = [] | |
for key in state_dict.keys(): | |
new_key = None | |
if 'gamma' in key: | |
new_key = key.replace('gamma', 'weight') | |
if 'beta' in key: | |
new_key = key.replace('beta', 'bias') | |
if new_key: | |
old_keys.append(key) | |
new_keys.append(new_key) | |
for old_key, new_key in zip(old_keys, new_keys): | |
state_dict[new_key] = state_dict.pop(old_key) | |
missing_keys = [] | |
unexpected_keys = [] | |
error_msgs = [] | |
# copy state_dict so _load_from_state_dict can modify it | |
metadata = getattr(state_dict, '_metadata', None) | |
state_dict = state_dict.copy() | |
if metadata is not None: | |
state_dict._metadata = metadata | |
def load(module, prefix=''): | |
local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {}) | |
module._load_from_state_dict( | |
state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs) | |
for name, child in module._modules.items(): | |
if child is not None: | |
load(child, prefix + name + '.') | |
start_prefix = '' | |
if not hasattr(model, 'bert') and any(s.startswith('bert.') for s in state_dict.keys()): | |
start_prefix = 'bert.' | |
load(model, prefix=start_prefix) | |
# if len(missing_keys) > 0: | |
# logger.info("Weights of {} not initialized from pretrained model: {}".format( | |
# model.__class__.__name__, missing_keys)) | |
# if len(unexpected_keys) > 0: | |
# logger.info("Weights from pretrained model not used in {}: {}".format( | |
# model.__class__.__name__, unexpected_keys)) | |
if len(error_msgs) > 0: | |
raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format( | |
model.__class__.__name__, "\n\t".join(error_msgs))) | |
return model | |
class LXRTModel(BertPreTrainedModel): | |
"""LXRT Model.""" | |
def __init__(self, config): | |
super().__init__(config) | |
self.embeddings = BertEmbeddings(config) | |
self.encoder = LXRTEncoder(config) | |
self.pooler = BertPooler(config) | |
self.apply(self.init_bert_weights) | |
def forward(self, input_ids, token_type_ids=None, attention_mask=None, | |
visual_feats=None, visual_attention_mask=None): | |
if attention_mask is None: | |
attention_mask = torch.ones_like(input_ids) | |
if token_type_ids is None: | |
token_type_ids = torch.zeros_like(input_ids) | |
# We create a 3D attention mask from a 2D tensor mask. | |
# Sizes are [batch_size, 1, 1, to_seq_length] | |
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] | |
# this attention mask is more simple than the triangular masking of causal attention | |
# used in OpenAI GPT, we just need to prepare the broadcast dimension here. | |
extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) | |
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for | |
# masked positions, this operation will create a tensor which is 0.0 for | |
# positions we want to attend and -10000.0 for masked positions. | |
# Since we are adding it to the raw scores before the softmax, this is | |
# effectively the same as removing these entirely. | |
extended_attention_mask = extended_attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility | |
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 | |
# Process the visual attention mask | |
if visual_attention_mask is not None: | |
extended_visual_attention_mask = visual_attention_mask.unsqueeze(1).unsqueeze(2) | |
extended_visual_attention_mask = extended_visual_attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility | |
extended_visual_attention_mask = (1.0 - extended_visual_attention_mask) * -10000.0 | |
else: | |
extended_visual_attention_mask = None | |
# Positional Word Embeddings | |
embedding_output = self.embeddings(input_ids, token_type_ids) | |
# Run LXRT backbone | |
lang_feats, visn_feats = self.encoder( | |
embedding_output, | |
extended_attention_mask, | |
visn_feats=visual_feats, | |
visn_attention_mask=extended_visual_attention_mask) | |
pooled_output = self.pooler(lang_feats) | |
return (lang_feats, visn_feats), pooled_output | |
class LXRTPretraining(BertPreTrainedModel): | |
def __init__(self, | |
config, | |
task_mask_lm=True, | |
task_matched=True, | |
task_obj_predict=True, | |
visual_losses='', | |
task_qa=True, | |
num_answers=2): | |
super().__init__(config) | |
# Configuration | |
self.config = config | |
self.num_answers = num_answers | |
# Use of pre-training tasks | |
self.task_mask_lm = task_mask_lm | |
self.task_obj_predict = task_obj_predict | |
self.task_matched = task_matched | |
self.task_qa = task_qa | |
# LXRT backbone | |
self.bert = LXRTModel(config) | |
# Pre-training heads | |
self.cls = BertPreTrainingHeads(config, self.bert.embeddings.word_embeddings.weight) | |
if self.task_obj_predict: | |
self.obj_predict_head = BertVisualObjHead(config, visual_losses) | |
if self.task_qa: | |
self.answer_head = BertVisualAnswerHead(config, self.num_answers) | |
# Weight initialization | |
self.apply(self.init_bert_weights) | |
def forward(self, input_ids, token_type_ids=None, attention_mask=None, masked_lm_labels=None, | |
visual_feats=None, pos=None, obj_labels=None, matched_label=None, ans=None): | |
(lang_output, visn_output), pooled_output = self.bert( | |
input_ids, token_type_ids, attention_mask, | |
visual_feats=(visual_feats, pos), | |
) | |
lang_prediction_scores, cross_relationship_score = self.cls(lang_output, pooled_output) | |
if self.task_qa: | |
answer_score = self.answer_head(pooled_output) | |
else: | |
# This answer_score would not be used anywhere, | |
# just to keep a constant return function signature. | |
answer_score = pooled_output[0][0] | |
total_loss = 0. | |
loss_fct = CrossEntropyLoss(ignore_index=-1) | |
losses = () | |
if masked_lm_labels is not None and self.task_mask_lm: | |
masked_lm_loss = loss_fct( | |
lang_prediction_scores.view(-1, self.config.vocab_size), | |
masked_lm_labels.view(-1) | |
) | |
total_loss += masked_lm_loss | |
losses += (masked_lm_loss.detach(),) | |
if matched_label is not None and self.task_matched: | |
matched_loss = loss_fct( | |
cross_relationship_score.view(-1, 2), | |
matched_label.view(-1) | |
) | |
total_loss += matched_loss | |
losses += (matched_loss.detach(),) | |
if obj_labels is not None and self.task_obj_predict: | |
loss_fcts = { | |
'l2': SmoothL1Loss(reduction='none'), | |
'ce': CrossEntropyLoss(ignore_index=-1, reduction='none') | |
} | |
total_visn_loss = 0. | |
visn_prediction_scores_dict = self.obj_predict_head(visn_output) | |
for key in VISUAL_CONFIG.visual_losses: | |
label, mask_conf = obj_labels[key] | |
output_dim, loss_fct_name, label_shape, weight = VISUAL_CONFIG.visual_loss_config[key] | |
visn_loss_fct = loss_fcts[loss_fct_name] | |
visn_prediction_scores = visn_prediction_scores_dict[key] | |
visn_loss = visn_loss_fct( | |
visn_prediction_scores.view(-1, output_dim), | |
label.view(*label_shape), | |
) | |
if visn_loss.dim() > 1: # Regression Losses | |
visn_loss = visn_loss.mean(1) | |
visn_loss = (visn_loss * mask_conf.view(-1)).mean() * weight | |
total_visn_loss += visn_loss | |
losses += (visn_loss.detach(),) | |
total_loss += total_visn_loss | |
if ans is not None and self.task_qa: | |
answer_loss = loss_fct( | |
answer_score.view(-1, self.num_answers), | |
ans.view(-1) | |
) | |
# Since this Github version pre-trains with QA loss from the beginning, | |
# I exclude "*2" here to match the effect of QA losses. | |
# Previous: (loss *0) for 6 epochs, (loss *2) for 6 epochs. (Used 10 instead of 6 in EMNLP paper) | |
# Now : (loss *1) for 12 epochs | |
# | |
# * 2 # Multiply by 2 because > half of the data will not have label | |
total_loss += answer_loss | |
losses += (answer_loss.detach(),) | |
return total_loss, torch.stack(losses).unsqueeze(0), answer_score.detach() | |
class LXRTFeatureExtraction(BertPreTrainedModel): | |
""" | |
BERT model for classification. | |
""" | |
def __init__(self, config, mode='lxr'): | |
""" | |
:param config: | |
:param mode: Number of visual layers | |
""" | |
super().__init__(config) | |
self.bert = LXRTModel(config) | |
self.mode = mode | |
self.apply(self.init_bert_weights) | |
def forward(self, input_ids, token_type_ids=None, attention_mask=None, visual_feats=None, | |
visual_attention_mask=None): | |
feat_seq, pooled_output = self.bert(input_ids, token_type_ids, attention_mask, | |
visual_feats=visual_feats, | |
visual_attention_mask=visual_attention_mask) | |
if 'x' == self.mode: | |
return pooled_output | |
elif 'x' in self.mode and ('l' in self.mode or 'r' in self.mode): | |
return feat_seq, pooled_output | |
elif 'l' in self.mode or 'r' in self.mode: | |
return feat_seq | |